Journal of Medicinal Chemistry

Structural Sweet Spot for A₁ Adenosine Receptor Activation by Truncated (N)-Methanocarba Nucleosides: Receptor Docking and Potent Anticonvulsant Activity

Dilip K. Tosh,^{†,§} Silvia Paoletta,^{†,§} Francesca Deflorian,[†] Khai Phan,[†] Steven M. Moss,[†] Zhan-Guo Gao,[†] Xiaohui Jiang,[‡] and Kenneth A. Jacobson^{*,†}

[†]Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, and [‡]Anticonvulsant Screening Program, Office of Translational Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, United States

Supporting Information

ABSTRACT: A₁ adenosine receptor (AR) agonists display antiischemic and antiepileptic neuroprotective activity, but peripheral cardiovascular side effects impeded their development. SAR study of N^6 -cycloalkylmethyl 4'-truncated (N)-methanocarba-adenosines identified **10** (MRS5474, N^6 -dicyclopropylmethyl, $K_i = 47.9$ nM) as a moderately A₁AR-selective full agonist. Two stereochemically defined N^6 -methynyl group substituents displayed narrow SAR; groups larger than cyclobutyl greatly reduced AR affinity, and those larger or smaller than cyclopropyl reduced A₁AR selectivity. Nucleoside docking to A₁AR homology model characterized distinct hydrophobic cyclopropyl subpockets, the larger "A" forming contacts with Thr270 (7.35), Tyr271 (7.36), Ile274 (7.39), and carbon chains of glutamates (EL2) and the smaller subpocket "B" forming contacts between TM6 and TM7. **10** suppressed minimal clonic seizures (6 Hz mouse model) without typical rotarod impairment of A₁AR agonists. Truncated nucleosides, an appealing preclinical approach, have more druglike physicochemical properties than other

 A_1AR agonists. Thus, we identified highly restricted regions for substitution around N^6 suitable for an A_1AR agonist with anticonvulsant activity.

E xtracellular adenosine acts through four subtypes of Gprotein-coupled adenosine receptors (ARs), i.e., at A_{1-} , A_{2A-} , A_{2B-} , and A_3AR subtypes.¹ Endogenous adenosine begins to activate the A_1AR at low concentrations (~10 nM) to induce cytoprotective and anti-ischemic functions. Full or partial agonists of the A_1AR are being considered for treatment of various conditions, including seizures, stroke, diabetes, cardioprotection, and cardiac arrhythmias.²⁻⁴ A_1AR agonists are highly neuroprotective in ischemic^{5,6} and epileptic⁷⁻⁹ models. A_1AR agonists are also being explored for antidepressant,¹⁰ antianxiety,¹¹ and other neuropsychiatric effects. A_1AR agonists are also useful for pain,¹² due to their presynaptic action to decrease the release of excitatory neurotransmitters in the brain.¹³ However, peripheral cardiovascular side effects have prevented the introduction of A_1AR agonists for treating disorders of the central nervous system (CNS).¹⁴

Structural modification of adenosine to achieve selectivity in activating one or more AR subtypes has centered on the adenine C2- and N^6 -positions and on the ribose moiety.^{1,15} Modifications of the ribose moiety, such as 5'-amides and alternate carbocyclic ring systems, are especially useful for enhancing AR affinity. For example, replacement of the ribose tetrahydrofuryl ring with a methanocarba ([3.1.0]-bicyclohexane) ring system can enforce a North (N)-envelope

conformation, depending on the fusion position of the cyclopropane ring. This replacement, which is highly preferred in AR binding over the isomer of the opposite South (S)conformation, maintains or enhances affinity at A1- and A3ARs with respect to the ribosides, but decreases affinity at $A_{2A}AR$.¹⁶ Another widely explored modification, truncation at the 4'carbon, i.e. removal of the 5'-group, is generally tolerated in A3AR binding for various chemical series, including 4'-thio (e.g., 1a, Chart 1) and (N)-methanocarba analogues (e.g., 2a).^{17,18} However, the observed effects of this truncation on the relative efficacy of nucleoside derivatives to activate ARs are variable for the different AR subtypes and chemotypes. For example, truncation in the 4'-thio adenosine series tends to produce nucleosides that antagonize the A3AR and in some cases may additionally agonize the A_{2A}AR, such as 1b.¹⁹ Truncation in the (N)-methanocarba-adenosine series results in nucleosides that typically lose 2 orders of magnitude of affinity at the A_1 - and $A_{2A}AR$, depending on the N⁶-substituent and display a wide range of efficacies at the A_1 - and A_3AR , e.g. A_3AR antagonist **2a**.^{18,20} Focusing on the neuroprotective A_1AR , we scanned a wide range of N^6 -substituents known to enhance

Received: July 5, 2012 Published: August 24, 2012

 ${}^{a}K_{i}$ values in nM in binding to the hARs are indicated. 17,18,20,44

 A_1AR affinity²¹ and concluded that only certain N^6 -cycloalkylmethyl and dicycloalkylmethyl groups (e.g., **2b**) maintain selectivity and agonist efficacy at this AR subtype.²⁰

A goal of this study was to characterize the structure–activity relationship (SAR) of an expanded set of closely related and stereochemically defined N^6 -cycloalkylmethyl and dicycloalkylmethyl 4'-truncated (N)-methanocarba adenosine derivatives as human (h) A₁AR agonists. Both binding and efficacy studies were performed on the novel derivatives, and selected nucleosides (including ribosides for comparison) were examined in in vivo anticonvulsant models.

Finally, receptor homology modeling and ligand docking were used to gain insight into the structural basis for AR recognition and activation in this series of closely related N⁶derivatives. The modeling was based on an agonist-bound A_{2A}AR X-ray structure recently reported by Xu et al.²² The interaction of ligands with the Gi-coupled AIAR was compared to the G_i-coupled A₃AR, at which the affinity in this nucleoside series was also dramatically modulated. Pharmacological properties have been related to specific binding site interactions, especially in a small and sterically restricted region of the hydrophobic pocket, where the $N^{\acute{o}}$ -group has been proposed to reside. The loss of interactions in the ribose 5'region was compensated by structural characteristics of a few N° -substituents in the 4'-truncated analogues. Thus, the present study had three objectives: to more clearly define the narrow structural limits for binding and full activation of the A1AR within the N^6 -cycloalkylmethyl series, to correlate these findings with molecular modeling based on an X-ray structure of the A2AR, and to characterize anticonvulsant activity known to be associated with the A1AR in the brain. Because the requirements for A1AR selectivity and full agonist efficacy in this series were found to be highly restricted, we identified a structural sweet spot within the SAR of 4'-truncated nucleosides.

RESULTS

Chemical Synthesis. In an effort to increase A_1AR affinity and selectivity, we explored a set of N^6 -substitutions of 4'truncated (N)-methanocarba adenosines (Table 1), initially containing 2-chloro, that expanded upon our previous communication on an overlapping series of N^6 -modified truncated nucleosides.²⁰ The present series included substitution of a N^6 -methynyl group that was either chiral or achiral, e.g. 7, **12–21**, including the N^6 -dicyclopropylmethyl derivative **10** (associated previously with moderate A_1AR selectivity) and the N^6 -dicyclopentylmethyl **11** derivative. In many cases, a N^6 -cyclopropylmethyl group was further substituted on the α -methynyl carbon with an acyclic (**12**– 15) or cycloalkyl group (16–19) or a phenyl ring (20, 21). The stereochemistry at the methynyl carbon was clearly defined. A few previously reported N^6 -unsubstituted (3) and N^6 -alkyl/cycloalkyl derivatives (4–6, 8, and 9)²⁰ were included for comparison in the biological assays. This fine-tuning at the N^6 -position was followed by several modifications at the C2-position, incorporating 2-H, 2-iodo, and 2-hydrazino substitutions (37, 40). Additionally, 2-pyrazolyl substitutions (42, 43) were patterned after a set of A₁AR selective riboside agonists reported by Elzein et al.²³

Article

The synthetic route to the truncated 2-chloro derivatives involved nucleophilic displacement by the appropriate amine of a 6-chloroadenine group in an 2',3'-isopropylidene-protected precursor 22a (Scheme 1). A 2-chloro substitution of the adenine ring has been shown to increase affinity at either or both A1AR and A3AR, and in some cases, to alter AR efficacy.² Finally, while maintaining constant the most effective N^6 substituent dicyclopropylmethyl, substitution of the C2position was varied by the synthetic routes shown in Scheme 1 (2-iodo, 37b) and Scheme 2 (2-H, 37a; 2-hydrazino, 40; 2pyrazolo, 42, 43). The attempted synthesis of the 2-hydrazino derivative 40 by acid treatment to remove the isopropylidene group of the protected intermediate 39 resulted in decomposition. However, its preparation by hydrazine treatment of the unprotected nucleoside 10 was successful. Condensation of hydrazine compound 39 with methyl 2-formyl-3-oxopropionate under reflux conditions²³ gave the pyrazole derivative **41**, which underwent an acid hydrolysis in the presence of Dowex 50 to provide compound 42. Hydrolysis of the methyl ester of compound 42 in the presence of 1 N NaOH afforded acid derivative 43.

Pharmacological Evaluation. Binding affinity at three hAR subtypes was measured in assays using standard agonist radioligands (47, $[{}^{3}H]R$ -PIA; 48, $[{}^{3}H]CGS21680$; 49, $[{}^{125}I]I$ -AB-MECA) and membrane preparations from Chinese hamster ovary (CHO) cells (A₁AR and A₃AR) or human embryonic kidney (HEK) 293 cells (A_{2A}AR) stably expressing a hAR subtype (Table 1).¹⁸ Because activity within the class of (N)-methanocarba nucleosides was previously noted to be very weak or absent at the hA_{2B}AR, ^{16,25} we did not include this receptor in the initial pharmacological screen. Known potent A₁AR agonists, i.e., ribosides (44a, CPA; 44b, CCPA; 45, NECA; 46, ADAC), were included for comparison.²⁰

In the series of 2-chloro derivatives, the A₁AR affinity ($K_i \ge$ 50 nM) of 5'-truncated (N)-methanocarba adenosine derivatives (7–21) was often greater than the affinity at the A₃AR (K_i typically \ge 500 nM). The N⁶-dicyclopropylmethyl derivative 10 was the most potent in binding to the A₁AR with a K_i value of 47.9 nM and 10-fold selectivity compared to the A₃AR.²⁰ Table 1. In Vitro Potency of a Series of Truncated (N)-Methanocarba Adenosine Derivatives in Binding to Three Subtypes of hARs and Relative Efficacy at hA_1AR

$\begin{array}{cccc} HN & R^1 & HN & C^{M^{N+1}} \\ & HN & R^2 & HN & V \\ & N & N & C_1 & N & N & V \\ & N & N & C_1 & N & N & R^4 \end{array}$														
				OF	нон	он он		он он	н					
Compound (configuration	R ¹ =		3-7 Affinity K _i , nM or (% <i>inhibition</i>) ^a			8–21 % Inhibition, cyclic AMP ^d		37, 40, 42, 43 Compound R ² = R ³ = (configuration		Affinity K _i , nM or (% inhibition) ^a			% Inhibition, cyclic AMP ^d	
of Ca)			A ₁	A _{2A}	A ₃	A ₁		of Ca)			A ₁	A _{2A}	A ₃	$\mathbf{A}_{\mathbf{l}}$
3 ^b	Н		350±90	3140±450	160±42	68.1±4.4	-	16 (R)	$\bigcirc \downarrow $	\searrow	270±60	5470±300	2930±480	33.4±5.2
4 ⁰ 5 ^b	CH ₂ CH ₃		930±110 68.4±8.9	(11%) 4410±1090	6.6±1.6 8.9±1.9	ND 81.0±21.1	-	(1) 17 (<i>S</i>)		\bigcirc	120±40	6450±720	2790±720	18.1±6.8
6 ^{b,c}	, (R,S)		86.8±23.7	(41%)	110±17	45.5±4.8	-	18 (R)		\checkmark	490±90	4840±400	1760±210	18.4±2.1
7			780±100	(45±3%)	670±10	-9.0±4.1	-	19 (S)	\checkmark		170±20	2550±170	550±50	24.0±5.2
	$\mathbf{R}^2 =$	$\mathbf{R}^3 =$					-	20 (<i>R</i>)	Ph	\searrow	3000±440	(46±4%)	790±100	-7.4±6.0
8 ^{b,e}	CH3	CH ₃	72.2±16.4	(39%)	12±1	50.5±6.4	-	21 (S)	\searrow	Ph	(50±5%)	(36±4%)	2200±470	-2.4±3.7
9 ^{b,c}	C ₂ H ₅	C_2H_5	78.8±15.6	3700±300	52±14	28.6±3.8		(-)	R ⁴	· =				
10 ^{b,e}	\triangleright	\triangleright	47.9±10.5	3950±410	470±15	94.3±5.3]	37a	Н		56.1±11.0	(38±5%)	17.0±2.0	ND
11	\sim .	<u> </u>					-	37b]	[488±95	2230±640	182±14	ND
			(34±3%)	(13±3%)	(48±2%)	ND		40	NHI	NH ₂	210±80	(43±7%)	70.0±35.0	ND
12 (R)		C ₂ H ₅	68.1±5.0	3610±500	150±2	37.3±4.3		42	ξ-N-N CO ₂ CH ₃		730±50	4110±750	490±150	ND
13 (S)	C ₂ H ₅		150±10	4910±430	780±70	57.9±1.1		43	\$~_N_ ^N	CO ₂ H	1080±230	(17±5%)	640±150	ND
14	\searrow	>	76.0±8.0	1570±180	780±80	33.8±2.3		44a	į	I	1.8±0.5 ^f	794 ^h	72±12 ^e	100±3
(R)								44b	Ĺ	i	0.83 ^g	2270 ^h	38±6 ^e	ND
15	\geq		150±50	3650±370	1720±140	20.8±6.1		45	i .	i	6.8±2.4 ^f	20 ^h	35±12e	100±15
(S)								46	i		10.4±3.8 ⁱ	370±100 ⁱ	12.4±4.1 ⁱ	94±26 ⁱ

^{*a*}Using CHO or HEK293 (A_{2A} only) cells stably expressing a hAR (Supporting Information); affinity was expressed as K_i value (n = 3-5) or percent inhibition of radioligand binding at 10 μ M. The radioligands used were [³H]- N^6 -R-phenylisopropyladenosine 47, [³H]-2-[p-(2-carboxyethyl)phenyl-ethylamino]-5'-N-ethylcarboxamidoadenosine 48, or [¹²⁵I]- N^6 -(4-amino-3-iodobenzyl)adenosine-5'-N-methyluronamide 49, respectively, unless noted. ^{*b*}Compounds 3–6 and 8–10 were prepared previously.⁴⁴ ^{*c*}6 is a diastereomeric mixture. ^{*d*}Maximal efficacy (at 10 μ M) in an A₁AR functional assay unless noted was determined by inhibition of forskolin-stimulated cyclic AMP production in AR-transfected CHO cells, expressed as percent inhibition (mean \pm standard error, n = 3-5) in comparison to effect (100%) of full agonist 44a at 10 μ M. ND, not determined ^{*c*}Tosh et al.²⁰ or Gao et al.⁵¹ g Klotz et al.²⁵ hMüller and Jacobson⁶⁰ iKlutz et al.⁶¹ Functional assay in guanine nucleotide binding. ^{*j*}Structures as shown:

dx.doi.org/10.1021/jm300965a | *J. Med. Chem.* 2012, 55, 8075–8090

Scheme 1. Synthesis of N^6 -Substituted 4'-Truncated Derivatives in the Ring-Constrained (N)-Methanocarba Adenosine Series^{*a*}

^aIntermediate **22a** was prepared as described.⁴⁴ Reagents and conditions: (a) RNH₂, Et₃N, MeOH, rt; (b) Dowex 50, MeOH/H₂O, rt. Compound **24** was used for the following step without isolation.

Nevertheless, cycloalkyl derivative 7 was nonselective, and a cyclopropyl/ethyl derivative 12 displayed considerable affinity $(K_i = 150 \text{ nM})$ in A₃AR binding. In comparing pairs of pure diastereoisomers differing only in the chirality of the α methynyl carbon of the N^6 -group, compounds 12, 17, 19, and 20 were more potent in A_1AR affinity than the opposite isomers, i.e., 13, 16, 18, and 21, respectively. N⁶-Cyclopropyl/ isopropylmethyl diastereoisomers 14 and 15 differed by only 2fold in A₁AR binding affinity. The novel N^6 -(S)-((cyclopropylcyclobutyl)methyl) derivative 17 was 23-fold selective for human A₁AR ($K_i = 120$ nM) in comparison to A₂AR and 53-fold in comparison to A_{2A}AR. Other potent analogues in hA₁AR binding were (R)-cyclopropyl/ethyl **12** (K_i = 68 nM) and (R)-cyclopropyl/isopropyl 14 ($K_i = 76$ nM) derivatives. Compounds 14 and 15, closely related in structure to **10** except for lacking a bond to close one of the cyclopropyl rings, were also moderately selective for the A1AR. Analogues containing a phenyl (20, 21) group on the N^6 -methynyl substituent bound weakly at the three ARs, and a dicyclopentyl analogue (11) inhibited less than 50% binding at 10 μ M.

By introducing subtle structural changes, we attempted to indirectly characterize the environment of the receptor binding site surrounding each substituent on the chiral or prochiral N^6 methynyl carbon atom. A graphical comparison of the most potent truncated adenosine derivatives arranged by rank order of hA1AR binding affinity, and illustrating hA1AR/hA3AR selectivity, is shown in Figure 1. We delineated separate binding preferences for the N^6 -methynyl substituents, i.e., R^2 and R^3 in Table 1, and the conformational effects of these groups. Compounds 10, 12, 14, 13, 17, and 15 displayed similar A1AR affinities in the range of 50-150 nM, but differed in degree of hA1AR/hA3AR selectivity. Dimethyl analogue 8 was an A3AR ligand ($K_i = 12 \text{ nM}$) with moderate selectivity in comparison to A₁AR; diethyl analogue 9 showed comparable affinity at A₁ and A₃ARs. When R³ was enlarged from a 3-membered to a 4membered ring (17), A₁AR affinity was better preserved than

when the same change occurred at R^2 (16). Reducing the rigidity of R³ better preserved the A1AR selectivity than reducing the rigidity of R^2 (cf. 12–15). Introduction of a methylene group that separates a cyclopropyl substituent from the N^6 -methynyl atom (18 and 19) did not maintain A₁AR affinity. Thus, the optimal R³ substituent, i.e., cyclopropyl, could be reduced in size or rigidity to ethyl or isopropyl with only a minor reduction of A1AR affinity. Also, an enlargement of R³ to cyclobutyl reduced affinity by only 2.5-fold. However, when the R^2 substituent was made smaller than the cyclopropyl ring, a more substantial loss of A1AR affinity occurred. Therefore, these two subpockets surrounding the N^6 substituent had slightly different steric requirements. A greater than one bond deviation or C-atom alteration from the size of cyclopropyl either dramatically reduced the AR affinity or the A1AR selectivity.

Replacement of 2-Cl on compound 10 with 2-H in 37a was tolerated at the A₁AR, but affinity at the A₃AR increased 28fold. Substitution of 2-chloro of 10 with iodo greatly reduced affinity and selectivity in 37b. Efforts to combine the N^6 dicyclopropylmethyl group with large C2 substituents based on the C2-pyrazolyl derivatives, known to be compatible with A₁AR affinity, produced only weak nonselective ligands 42 and 43. The 2-hydrazino derivative 40 was also nonselective, and 10 remained the optimal A₁AR-selective structure.

Functional data determined at a single concentration (10 μ M) in an assay of adenylate cyclase (A₁AR-induced inhibition of cyclic AMP production in CHO cells stably expressing the receptor²⁶) are reported in Table 1. The potent and selective agonist **44a** was used as the standard full agonist, and the nonselective AR agonist 5'-*N*-ethylcarboxamidoadenosine **45** was also a full agonist in this assay. Most of the N⁶-cycloalkylmethyl analogues were partial agonists of the A₁AR. However, a concentration–response analysis for **10** and **45** in A₁AR-mediated inhibition of cyclic AMP indicated that EC₅₀ values were 40.7 ± 19.7 and 10.2 ± 3.3 nM, respectively, which

Scheme 2. Substitution of the C2-Position of Truncated Nucleosides Containing N^6 -Dicyclopropylmethyl Substitution, i.e., the Most Effective for Preservation of hA_1AR Binding Affinity, Selectivity, and Efficacy^{*a*}

^aReagents and conditions: (a) RNH₂, DIPEA, *i*-PrOH, reflux; (b) Dowex 50, MeOH/H₂O, rt; (c) hydrazine, reflux; (d) methoxycarbonyl malondialdehyde, EtOH, reflux; (e) 1 N NaOH, MeOH, rt.

was in close agreement with their A_1AR binding affinities. Compound 13 was of intermediate maximal efficacy (57.9% of full agonist) at the A_1AR based on results at a single saturating concentration. Other truncated analogues that proved to be of low efficacy in activation of the A_1AR , but still within the range of 30–40%, were 12, 14, and 16 (for which affinity at the A_1AR exceeded other AR subtypes). Curiously, a phenyl/cyclopropyl analogue 20 did not activate the A_1AR at 10 μM , a concentration that exceeded its K_i value by 13-fold, suggesting possible antagonism. Compound 10 was tested for functional activity in stimulation of adenylate cyclase through the $hA_{2B}AR$ expressed in CHO cells and was found to be nearly inactive (13.7 ± 4.4% of activity of full agonist 45 at 10 μ M). Thus, the A_1AR selectivity of 10 was maintained within the entire AR family.

Molecular Modeling. The binding at ARs of the newly synthesized truncated (N)-methanocarba nucleosides was also evaluated through molecular modeling studies. Previously

reported homology models of the hA1- and hA3ARs,²⁰ built using a recently reported agonist-bound A_{2A}AR crystallographic structure (PDB ID: 3QAK) as a template,²² were used to perform docking simulations of each of the compounds 8-21. In the A2AR crystal structure, the agonist ligand contained a bulky N^6 -substituent, which opened EL3 to allow binding of other N⁶-substituted nucleosides. The thermostabilized agonistbound A_{2A}AR structure of Lebon et al.,²⁷ in which EL3 is closer to EL2 and which contains mutations in the transmembrane (TM) region, including the ribose binding site, was not used as a template. In our previous study, the docking pose of compound 10 at the hA1AR was compared with that of 5'-Nethylcarboxamidoadenosine 45.²⁰ Here we give a more detailed description of the binding mode of this new series of truncated (N)-methanocarba nucleosides in terms of their affinity and selectivity profiles.

A docking pose of compound 10 inside the hA_1AR binding site (Figure 2, panel A) featured most of the main receptor-

Figure 1. Graphical comparison of the most potent truncated adenosine derivatives arranged by rank order of hA_1AR binding affinity (ranging from 48 to 270 nM). The lower plots represent the hA_1AR selectivity in comparison to the hA_3AR and maximal efficacy at the hA_1AR (data in Table 1).

ligand interactions observed in the agonist-bound $hA_{2A}AR$ crystal structures. 22,27 These interactions, involving both the adenine core and the ribose ring, were noted in the docking poses of this new series of truncated (N)-methanocarba nucleosides at both the hA1- and hA3ARs. In particular, the 3'- and 2'-hydroxyl groups formed H-bonds with residues (using a GPCR numbering convention²⁸) at positions 7.42 (Thr277 in hA1AR and Ser271 in hA3AR) and 7.43 (His278 in hA1AR and His272 in hA3AR), respectively. The side chain of asparagine 6.55 (Asn254 in hA₁AR and Asn250 in hA₂AR) strongly interacted with these compounds through two Hbonds involving the 6-amino group and the N⁷ atom of the adenine ring. Moreover, the adenine core was anchored inside the binding site by a $\pi - \pi$ stacking interaction with a phenylalanine in EL2 (Phe171 in hA1AR and Phe168 in hA₃AR) and strong hydrophobic contacts with leucine 6.51 (Leu250 in hA1AR and Leu246 in hA3AR) and isoleucine 7.39 (Ile274 in hA1AR and Ile268 in hA3AR).

Two key interactions observed for the crystallographic poses of **45**-like agonists (5'-*N*-ethylcarboxamido derivatives) at the hA_{2A}AR were necessarily missing in these truncated derivatives. In the hA_{2A}AR X-ray structures, Thr88 (3.36) and His250 (6.52) coordinated, through H-bonding interactions, the 5'-CO-NH-alkyl groups of the cocrystallized agonists **45** and 6-(2,2-diphenylethylamino)-9-((2*R*,3*R*,4*S*,5*S*)-5-(ethylcarbamo-yl)-3,4-dihydroxytetrahydrofuran-2-yl)-*N*-(2-(3-(1-(pyridin-2-yl)piperidin-4-yl)ureido)ethyl)-9*H*-purine-2-carboxamide (**50**, UK-432097).^{22,27} The threonine at position 3.36 is conserved among all four AR subtypes, while the histidine at position 6.52 is conserved in hA_{2A}⁻, hA_{2B}⁻, and hA₁ARs, but is substituted with a serine in the hA₃AR. Therefore, these conserved residues were predicted to also be important in agonist binding at the hA₁AR. The difference at position 6.52 could additionally be related to the different behavior of the truncated ring-

constrained nucleosides at A_1 - and A_3ARs , as previously hypothesized.²⁰

Moreover, the hydrophilic region of the receptor associated with ribose binding is key to the activation process, which likely involves essential residues of TM3, TM6, and TM7 throughout the AR family, as observed in the $A_{2A}AR^{22,27}$ Thus, the loss of the S'-substituent is expected to affect AR efficacy, which it clearly does at the A₃AR, as observed for other previously reported truncated (N)-methanocarba nucleosides.³¹ However, the effect at the A₁AR is highly variable with relative maximal efficacies of this series ranging from low to high (80–100% in compounds 5 and 10).

The structural basis for the full agonism of **10**, in contrast to closely related compounds that have greatly reduced efficacy at this subtype, is difficult to identify but might be related to some interactions formed at the entrance of the binding site, i.e., the N^6 -binding region, that are crucial in orienting and stabilizing the compound inside the cavity.

A detailed analysis of ligand interactions with the upper region of the binding site has helped to clarify the affinity and selectivity profiles of this new series of truncated (N)methanocarba derivatives. As shown in Figure 2 (panel B), the orientation of the N^6 -dicyclopropylmethyl substituent of compound 10 allowed us to identify two distinct upper subpockets in the hA1AR. The larger of the two subpocket, designated "A", corresponds to the main entrance of the binding site and accommodated one cyclopropyl ring to form hydrophobic contacts with Thr270 (7.35), Tyr271 (7.36), and Ile274 (7.39) and the carbon chains of Glu170 (EL2) and Glu172 (EL2). The other cyclopropyl ring of 10 perfectly fits a smaller side subpocket, designated "B", which was located between TM6 and TM7 and delimited by Leu253 (6.54), Thr257 (6.58), Thr270 (7.35), and at the bottom by Leu250 (6.51). Subpocket A corresponds also to the region that

Article

Figure 2. (A) Side view and (B) top view of the docking pose of compound **10** (in magenta) inside the binding site of the hA_1AR model. Side chains of some amino acids important for ligand recognition and H-bonding interactions are highlighted. Hydrogen atoms are not displayed. The Connolly surface of some amino acids surrounding the binding site is displayed. Surface color indicates hydrophobic regions (green), mildly polar regions (blue) and H-bonding regions (magenta). The boundaries of the two identified subpockets are highlighted (larger subpocket A in yellow and smaller subpocket B in orange). R^2 (Table 1) is predicted to occupy subpocket A, and R^3 is predicted to occupy subpocket B.

accomodates the extended N^6 and C2 groups of 50 in the $A_{2A}AR$ crystal structure.

With respect to this N^6 -region, docking results showed some differences between hA_{1^-} and hA_3ARs in the binding of these new truncated (N)-methanocarba derivatives at ARs that could explain their different affinity profiles at these receptors. In fact, the orientation and the interactions of the N^6 -substituents were particular for each receptor subtype, mainly due to differences between the residues present in the upper region of the binding site. In particular, three residues delimiting subpocket B in the hA₁AR are substituted in the hA₃AR with amino acids bearing bulkier side chains, namely Ile249 (6.54), Ile253 (6.58), and Leu264 (7.35). While at the hA_{2A}AR, these residues are substituted with Ile252 (6.54), Thr256 (6.58), and Met270 (7.35), respectively, giving rise to again a different scenario. Consequently, at the hA₃AR there was no side pocket B between TM6 and TM7 able to accommodate a cyclopropyl ring, and this determined a different orientation of the N^6 -substituent inside the cavity (Figure 3). In fact, the upper region of the hA₃AR binding site was overall more hydrophobic as compared to that of the hA₁AR, but its shape was more suitable to accommodate unbranched hydrophobic substituents. Due to the more difficult fit of the branched N^6 -group in this region, the position of compound 10 was slightly shifted within the hA₃AR binding site and so it established weaker interactions with the key residues deeper in the cavity. This finding can explain the low affinity for the hA₃AR of the present set of (N)-methanocarba nucleosides bearing α -branched N^6 -

Figure 3. Top view of the docking pose of compound **10** (in magenta) inside the binding site of the hA₃AR model. Side chains of amino acids at the entrance of the binding site are highlighted and their Connolly surface is displayed. Surface color indicates hydrophobic regions (green), mildly polar regions (blue), and hydrogen-bonding regions (magenta). Hydrogen atoms are not displayed.

substituents, with affinity generally decreasing with an increase in volume of the groups on the branches. This view is also consistent with the enhanced hA₃AR affinity associated with reported truncated (N)-methanocarba analogs having unbranched hydrophobic substituents, such as benzyl, at the N^6 position (also compare compounds 5 and 6).²⁰

Overall, increasing or decreasing the size of the groups on the α -carbon from cyclopropyl decreased hA₁AR affinity. Thus, the steric hindrance of these larger groups disfavored the precise conformational arrangement necessary to occupy the two subpockets. Pocket A, although larger in its opening to the extracellular side of the receptor, did not tolerate deviation from R² = cyclopropyl, while pocket B could accommodate R³ = cyclobutyl or ethyl with some cost in affinity.

Moreover, docking results and conformational analysis of the dihedral N^6 -C α bond angles showed that the preferred binding conformation at the hA1AR for this series of truncated (N)methanocarba nucleosides placed the hydrogen atom on the α carbon pointing toward TM7, even though an alternative conformation, with the hydrogen oriented toward TM5, was also found (Figure S1, Supporting Information). Therefore, in its preferred conformation, the R^3 group on the C α occupied the smaller subpocket B, while the R² group was located in the larger subpocket A. Depending on the groups attached to the α -carbon and their steric complementarity with the two subpockets, two opposite diastereoisomers bound with different strength to the receptor binding site and so possessed different binding affinity. In fact, if a small group (e.g., ethyl) with low complementarity with the larger subpocket A was present on the C α , then the most potent diastereoisomer was the one that can more easily accommodate that group in subpocket B (compound 12, ethyl group in R³, as compared to compound 13, ethyl group in \mathbb{R}^2). On the other hand, if an extended group (e.g., cyclopropylmethyl) was present on the $C\alpha$, then the isomer able to locate this group in the larger subpocket A

possesses higher affinity at the receptor (e.g., 19, cyclopropylmethyl group in \mathbb{R}^2 , as compared to 18, cyclopropylmethyl group in \mathbb{R}^3).

Anticonvulsant Testing. Three A_1AR agonists were examined in models of electrically and chemically induced seizures (Table 2).²⁹ The anticonvulsant activity of 2-chloro-

Table 2. Anticonvulsant Activity in Mice of A1AR Agonists

compd ^a	behavioral toxicity TD ₅₀ , mg/kg	6 Hz model ED ₅₀ , mg/kg	MES model ^b (dose, mg/kg)	scMET model ^b (dose, mg/kg)
10	>30 ^d	2.74 ^c	1/4 (3)	no protection (3)
44b	0.84 ^c	0.12 ^c	1/4(1)	1/4 (1)
46	0.14^{e}	0.03 ^c	4/8 (2)	5/8 (1)

^{*a*}Administered ip. ^{*b*}Qualitative results, expressed as number of animals protected from convulsions/total number tested. ^{*c*}Measured at 1 h (time of peak of effect) postinjection, dose range for **10** was 0.75–10 mg/kg. ^{*d*}No rotarod toxicity at 30 mg/kg. ^{*c*}Measured at 4 h (time of peak of effect) post injection.

 N^6 -cyclopentyladenosine (44b, CCPA) was studied previously,^{7,9} and 44b was included in the present study as a potent reference A₁AR agonist that does not distinguish between central and peripheral action. N^6 -[4-[[[4-[[[(2-Aminoethyl)-amino]carbonyl]methyl]anilino]carbonyl]methyl]phenyl]-adenosine (46, ADAC) is a potent A₁AR agonist that has been shown to be neuroprotective in various models.^{6,30} Full agonist 10 displayed efficacy in a seizure model in mice without the toxicity observed in the active dose range (tested up to 30 mg/kg, ip). Other A₁AR agonists began to show toxicity, i.e., the side effects evident in the rotarod performance test (i.e., inability to remain on the rotarod) overlapping the active dose range.

The 6 Hz minimal clonic seizure model is an acute electroshock seizure test that produces a seizure with a limbic

Table 3. Summary of the Characteristics of the Two Pockets in A ₁ AR Surrounding Substituents of the N ⁶ -Methynyl Carbon
Atom, Based on Observed SAR and Predictions from Molecular Modeling (see Table 1 for definition of R^2 and R^3)

characteristic	pocket A	pocket B
size	larger (extends upward, but has narrow dimensions near N^6 -methynyl atom)	smaller
location	TM7-EL2	between TM6 and TM7
contact residues ^a	Thr270 (7.35), Tyr271 (7.36), Ile274 (7.39), Glu170 (EL2), Glu172 (EL2)	Leu253 (6.54), Thr257 (6.58), Thr270 (7.35), Leu250 (6.51)
correspondence to N^6 -group of 47^b	site of PhCH ₂ binding	site of CH ₃ binding
present in A ₃ AR?	yes	no ^c
correspondence to R (assuming most favorable docking with $N^6{\rm -C}{\rm -H}$ toward TM7)	R ²	R ³
preferred group	c-Pr	c-Pr
accommodates group smaller than c-Pr? (Et)	no (exact steric complementarity is important)	yes
accommodates group less rigid than c-Pr? (i-Pr)	no	yes
accommodates group larger than c-Pr? (c-Bu)	no ^d	yes (only <i>c</i> -Bu)
	28 1	-

^{*a*} The residue numbering convention of Ballesteros and Weinstein is used.²⁸ ^{*b*} 47, (*R*)-*N*⁶-phenylisopropyladenosine. ^{*c*} Consistent with lower affinity of *N*⁶- α -branched analogues at the A₃AR. ^{*d*} No clear explanation from modeling, except that the dimensions near the *N*⁶-methynyl atom might be sterically restrictive. A larger group is tolerated, with intermediate affinity, only if there is an α -CH₂ spacer (19).

phenotype and displays a unique pharmacological profile to established antiepileptic drugs. In particular, the 6 Hz seizure is uniquely sensitive to the antiepileptic drug levetiracetam and partially resistant to the Na⁺ channel blockers.³¹ Three A₁AR agonists, the two reference compounds 44b and 46 and the truncated derivative 10, displayed efficacy in the 6 Hz model. The activities of 10 and 44b were quantified at 1 h postadministration of the compound, which was also equal to the time of peak effect (TPE). Complete dose-response curves using five different doses each of 10, 44b, and 46 indicated ED₅₀ values of 2.74, 0.12, and 0.03 mg/kg, respectively. Compound 10 protected in four out of eight mice at 1.5 mg/kg. Compared to the activity in the 6 Hz model, these compounds had no or minimal effect in the traditional seizure models, the maximal electroshock (MES) model, or the subcutaneous metrazol (pentylenetetrazol) model (scMET) at the same dosing range.

In the minimal behavioral toxicity test using the rotarod, the three compounds showed significant differences. The toxicity of **44b** was observed roughly in the same dose range (0.84 vs 0.12 mg/kg) as its protection in the 6 Hz model and at the same time point (1 h postinjection). Animals became lethargic and were unable to stay on the rotarod following ip drug administration, as exhibited with other A₁AR agonists.³² For compound **10**, no toxicity (zero out of eight mice) was observed at all doses tested up to 30 mg/kg, the highest dose tested, which was nearly completely protective (seven out of eight animals) in the 6 Hz model. Therefore, the therapeutic window for **10** appeared to be superior to that of **44b**.

Compound 10 was also tested in the corneal kindled mouse model to examine its effect on focal seizures. In a qualitative test, an EC₅₀ (\pm SE) of 1.79 \pm 0.71 mg/kg (n = 8) was determined at 1 h postinjection. This unique response profile of compound 10 makes it as an attractive candidate to treat drug-resistant epilepsy.

DISCUSSION

Our previous closely related communication²⁰ demonstrated that the affinity of truncated ring-constrained analogues, in comparison to ribosides, was less well preserved at the A_1AR than at the A_3AR . However, certain analogues, most notably the dicyclopropylmethyl analogue **10**, were relatively well preserved in binding and activation of the A_1AR . In this study, we built new analogues on the previous observation that **10** had 10-fold A_1AR selectivity in comparison to the A_3AR and 74-fold of selectivity vs $A_{2A}AR$. Moreover, this analogue was a full agonist at the h A_1AR . The fine-tuning of the structure of **10** now indicates that even minor adjustments of the structure cause a loss of potency, selectivity, or efficacy at the h A_1AR .

Our binding results at the hA₁AR showed that only Cl was preferred at the adenine C2-position, and N^6 -substituents other than dicyclopropylmethyl displayed inferior pharmacological profiles. Separate substituents (R² and R³) of the C α methynyl group had distinct and very narrow SAR requirements. Groups that were much larger or smaller than cyclopropyl were not compatible with A₁AR affinity, selectivity, and efficacy. Therefore, we describe the compound with optimal pharmacological properties, compound **10**, as a structural sweet spot for potent and selective activation of the A₁AR.

Molecular docking studies of these truncated (N)-methanocarba nucleosides at the hA1AR highlighted how a precise complementarity in the N^6 -region was needed to determine a good affinity and selectivity profile and to compensate for the missing anchoring effect of the ribose 5'-region. In fact, a detailed modeling analysis of the upper part of the hA1AR binding site predicted two different subpockets, A and B, able to accommodate the N^6 -substituents of these derivatives, and it seemed that an optimal occupancy of both subpockets was required for enhanced affinity at this receptor subtype. In particular, the smaller subpocket B can readily accommodate up to a cyclobutyl group, while subpocket A can fit substituents that are extended in the direction of EL2. The steric restriction of the subpockets can be the reason for the null affinity at hA₁AR of compound 11 bearing two cyclopentyl groups, as they are too bulky to fit in either pocket. On the other hand, smaller groups on the α -carbon of the N⁶-substituent, such as methyl or diethyl (compounds 8 and 9, respectively), even though they can occupy the pockets, possess lower complementarity as compared to the cyclopropyl group and consequently have no selectivity and lower affinity at the A1AR.

The identification of these two subpockets and the binding conformation proposed here are also in agreement with the binding data of others known A₁AR agonists.²¹ For example, the moderately selective A₁AR agonist (R)-(-)- N^6 -(2-phenylisopropyl)adenosine (47) is more potent than the corresponding opposite isomer (*S*-PIA). A hypothetical binding

mode for these adenosine derivatives, similar to the one proposed for our new rigid, truncated nucleosides, would readily place the phenylmethyl group of the R isomer in the larger subpocket A and the methyl group in the smaller subpocket B. Thus, there is a close correspondence of our new findings to the previously explored preference for N^6 -C α -branched R isomers in comparison to the corresponding S isomers.³³ A summary of the characteristics of the two pockets surrounding substituents of the N^6 -methynyl carbon atom is provided in Table 3.

Complementary anchoring of the N^6 -substituent inside the two subpockets seems important in orienting and stabilizing the compound inside the cavity. It could also help in keeping the adenine-methanocarba moiety in an efficacious active conformation, able to form strong H-bonds and hydrophobic interactions with residues in TM6, TM7, and EL2, while compensating for the missing interactions due to the lack of a 5'-substituent.

In in vivo testing, compound **10** was the only A_1AR agonist examined here that displayed a clear separation of anticonvulsant activity and toxicity. For example, a prototypical A_1AR agonist **44b** displayed toxicity in the rotarod assay (two out of eight animals) at a dose of 0.1 mg/kg. At a dose of 0.5 mg/kg **44b**, three out of eight animals displayed toxicity. Another known A_1AR agonist, **46**, was more potent than **44b** in both in vivo anticonvulsant activity and toxicity, but it also failed to demonstrate a separation of the two activities.

The unique response profile of compound 10 (inactive in MES and scMET, active in 6 Hz and corneal kindling models) and its novel mechanism of action through the A1AR make it a potential candidate to treat drug-resistant epilepsy. Traditional antiepileptic drugs (AEDs) carbamazepine, lamotrigine, phenytoin and topiramate are Na⁺ channel blockers, which have strong efficacy in the MES model.³⁴ They are either inactive or only partially efficacious in the 6 Hz model. On the other hand, newer AEDs having different mechanisms of action, such as levetiracetam and retigabine, are potent and efficacious in the 6 Hz model, which makes the 6 Hz model a model for identifying compounds that potentially target drug-resistant epilepsy.³¹ The kindling models are useful in searching for drugs to treat complex partial seizures, because kindled seizures not only provide an experimental model of focal seizures but also a means of testing drugs to stop seizure spread and generalization from a focus.35 The corneal kindled mouse model demonstrates a pharmacological profile consistent with the traditional hippocampal kindled rat model, while it requires no implantation surgery and less compound quantity for testing.³⁶ The unique activities of compound 10 in the 6 Hz and corneal kindled mouse model and its overcoming the limitations of other A1AR agonists (i.e., clear separation of anticonvulsant activity and toxicity) make it an attractive AED candidate for additional testing.

Many of the efforts to develop A_1AR agonists for peripheral applications, such as treating cardiac arrhythmias, have tried to limit central nervous system (CNS) penetration to avoid centrally mediated side effects. Conversely, other envisioned applications of A_1 agonists, i.e., for neurodegenerative and neurological disorders, depend on brain entry. A_1AR agonists have distinct neuroprotective and antinociceptive properties,^{5,6,12} and activation of the A_1AR by endogenous adenosine mediates the protective effects of fractalkine/CX3CL1.³⁷ However, the clinical development of previous generations of such agents has been limited by side effects, including

cardiovascular effects. In previous studies of the activity of A_1AR agonists in the CNS, only a small fraction of a peripherally administered agent crossed the blood-brain barrier (BBB).³⁸ However, a similar attempt to alter the biodistribution by removing the 2'-hydroxyl group of **44a** did not enhance brain uptake.³⁵

The peripheral side effects of exogenously administered A₁AR agonists that do not distinguish between the brain and periphery have impeded the development of such agents for the treatment of epileptic seizures. Recently, it was proposed that the antiseizure effect of endogenous adenosine could be boosted indirectly by inhibiting formation of the neurabin-RGS4 complex for "fine-tuning adenosine receptor function in the nervous system".³⁹ Other approaches to solve this problem involved the design of ligands that favor the CNS over the periphery, such as N^6 -[*R*-(2-benzothiazolyl)thio-2-propyl]-2-chloroadenosine (NNC-21-0136, $K_d = 1.16$ nM at rat A₁AR), which showed efficacy in in vivo stroke models and were reduced in their accompanying cardiovascular side effects.⁵ Prodrug approaches and localized adenosine delivery have also been explored.^{12,40}

The physicochemical properties of nucleosides that act as AR agonists often lead to limited in vivo bioavailability and reduced passage across the BBB. The cLog P of compound **10** is 1.41 (more favorable than cLog P of 0.14 for A₁AR-selective riboside and prototypical agonist **44a**), with the optimal for small molecular pharmaceutical substances being typically 2-3.⁴¹ Also, the total polar surface area (tPSA) for **10** and **44a** are calculated to be 92.8 and 122 Å², respectively. Most druglike small molecules have a PSA smaller than 120 Å²; thus, **10** is also preferred by this criterion. Compound **10** has fewer hydroxyl groups than **44a**, which would favor bioavailability in brain, and the molecular weight of **10** (376 Da) is comfortably within the most desirable range for pharmaceuticals.⁴¹ Therefore, by several criteria **10** is more druglike than **44a**.

We speculate on the basis for the apparent lack of peripheral side effects of compound 10 up to 30 mg/kg. Both 44b and 10 evidently enter the bloodstream and pass the BBB into the brain. Although 44b was ~58-fold more potent than 10 in binding at the A1AR, 10 had better physicochemical properties (cLogP, tPSA, H-bond donors, molecular weight), so it might penetrate the BBB better than 44b. The bioavailability in the brain of peripherally administered 10, i.e. whether its altered physicochemical properties may facilitate its passage across the BBB, is undetermined. Normally a drug travels from the bloodstream into brain, such that when the A1AR in brain is activated, the A1AR in heart should be activated within the same dose range as with 44b. For 10, the fact that no adverse effects were observed even at 30 mg/kg (ten times the ED_{50}) suggests that the free concentration of 10 in plasma might be reduced relative to standard A1AR agonists, possibly due to plasma protein binding. If the free drug concentration in blood would be lower, its ability to cross the BBB may remain unaffected or even increased. This phenomenon has been observed for a number of CNS drugs.⁴² This hypothesis could be tested by pharmacokinetic and plasma protein binding assavs.

 A_1AR agonists hold interest therapeutically for their cardioand neuroprotective, antiarrhythmic, antiseizure, antilipolytic, antiglaucoma, and anxiolytic actions. Some of the novel derivatives were partial A_1AR agonists, which are of interest for both cerebroprotective and cardiovascular application, depending on levels of endogenous adenosine and on receptor

Journal of Medicinal Chemistry

reserve.^{3,4,43} It is conceivable that the expanded range of physical properties in the present series of truncated derivatives would offer pharmacokinetic advantages. Therefore, this approach is appealing for preclinical development. This hypothesis will have to be evaluated in further in vivo studies.

EXPERIMENTAL PROCEDURES

Chemical Synthesis. General Methods. All reagents and solvents (regular and anhydrous) were of analytical grade, obtained from commercial suppliers and used without further purification. All amines were purchased from Asiba Pharmatech (Edison, NI), except 2.2dicyclopropylethylamine, which was obtained from Ryan Scientific, Inc. (Mount Pleasant, SC), and dicyclopropylmethylamine, which was obtained from J&W PharmLab (Levittown, PA). Compounds 22a and 35 were synthesized as reported.⁴⁴ Reactions were conducted under an atmosphere of nitrogen whenever anhydrous solvents were used. All reactions were monitored by thin-layer chromatography (TLC) using silica gel coated plates with a fluorescence indicator which were visualized (a) under UV light, (b) by dipping in a mixture of anisaldehyde (2.5 mL)/concentrated H₂SO₄ (5 mL)/methanol (425 mL), or (c) by dipping the plate in a solution of ninhydrin (0.3 g in 100 mL EtOH, containing AcOH, 1.3 mL) followed by heating. Silica gel column chromatography was performed with silica gel (SiO₂, 200-400 mesh, 60 Å) using moderate air pressure. Evaporation of solvents was carried out under reduced pressure at a temperature below 50 °C. After column chromatography, appropriate fractions were pooled, evaporated, and dried at high vacuum for at least 12 h to give the desired products in high purity. ¹H NMR spectra were recorded with a Bruker 400 MHz NMR spectrometer. Chemical shifts are reported in parts per million (ppm) relative to tetramethylsilane or using deuterated solvent as the internal standard (δ H: CDCl₃ 7.26 ppm). ESI-high resolution mass spectroscopic (HRMS) measurements were performed on a proteomics-optimized Q-TOF-2 (Micromass-Waters) using external calibration with polyalanine. Observed mass accuracies are those expected on the basis of the known performance of the instrument as well as the trends in masses of standard compounds observed at intervals during the series of measurements. Reported masses are observed masses uncorrected for this time-dependent drift in mass accuracy. TLC analysis was carried out on glass sheets precoated with silica gel F₂₅₄ (0.2 mm) from Sigma-Aldrich (St. Louis, MO). The purity of final nucleoside derivatives was checked using a Hewlett–Packard 1100 HPLC equipped with a Zorbax SB-Aq 5 μ m analytical column (50 × 4.6 mm; Agilent Technologies Inc., Palo Alto, CA). The mobile phase was a linear gradient solvent system of 5 mM TBAP (tetrabutylammonium dihydrogenphosphate)-CH₃CN from 80:20 to 0:100 in 13 min; the flow rate was 0.5 mL/min. Peaks were detected by UV absorption with a diode array detector at 230, 254, and 280 nm. All derivatives tested for biological activity showed >95% purity by HPLC analysis (detection at 254 nm).

(1R,2R,3S,4R,5S)-4-(2-Chloro-6-(2,2-dicyclopropylethylamino)-9H-purin-9-yl)bicyclo[3.1.0]hexane-2,3-diol (7). Dowex 50 resin (8 mg) was added to a solution of compound 23 (12 mg, 0.027 mmol) in methanol (0.5 mL) and water (0.5 mL) and the mixture stirred at room temperature overnight. The reaction mixture was filtered on a Celite bed, the filtrate was evaporated under vacuum, and the residue was purified by flash silica gel column chromatography (CH₂Cl₂:MeOH = 35:1) to give the desired compound 7 (8.2 mg, 74%) as a syrup: ¹H NMR (CD₃OD, 400 MHz) δ 8.15 (s, 1H), 4.79 (s, 1H), 4.71 (t, *J* = 5.6 Hz, 1H), 4.90 (d, *J* = 6.8 Hz, 1H), 3.72 (d, *J* = 6.4 Hz, 2H), 2.01–1.96 (m, 1H), 1.71–1.64 (m, 1H), 1.34–1.30 (m 2H), 0.78–0.72 (m, 2H), 0.51–0.42 (m, 5H), 0.28–0.17 (m, 4H); HRMS calcd for C₁₉H₂₅CIN₅O₂ (M + H)⁺ 390.1697, found 390.1708.

(1R,2R,3S,4R,5S)-4-(2-Chloro-6-(dicyclopentylmethylamino)-9Hpurin-9-yl)bicyclo[3.1.0]hexane-2,3-diol (11). Dicyclopentylmethylamine (1.0 mg, 0.024 mmol) and triethylamine (0.1 mL, 0.16 mmol) were added to a solution of compound 22a (4.2 mg, 0.012 mmol) in methanol (0.8 mL), and the mixture was stirred at room temperature overnight. The reaction mixture was evaporated under vacuum and the residue was roughly purified by flash silica gel column chromatography. The resulting compound **24** was dissolved with methanol (0.6 mL) and water (0.3 mL). Dowex 50 (4 mg) was added to the solution and stirring continued at room temperature overnight. After complete reaction of the starting material, the reaction mixture was filtered and the filtrate was evaporated under vacuum. The residue was purified by flash silica gel column chromatography (CH₂Cl₂:MeOH = 30:1) to give the desired compound **11** (3.4 mg, 64%) as a syrup: ¹H NMR (CD₃OD, 400 MHz) δ 8.17 (s, 1H), 4.80 (s, 1H), 4.71 (t, *J* = 6.0 Hz, 1H), 4.40 (t, *J* = 6.8 Hz, 1H), 3.91 (d, *J* = 6.4 Hz, 1H), 2.20–1.18 (m, 1H), 1.98–1.96 (m, 1H), 1.81–1.74 (m, 4H), 1.69–1.53 (m, 10H), 1.42–1.29 (m 4H), 0.92–0.90 (m, 1H), 0.81–0.74 (m, 1H); HRMS calcd for C₁₉H₂₅ClN₅O₂ (M + H)⁺ 390.1697, found 390.1708.

(1*R*,2*R*,35,4*R*,55)-4-(2-Chloro-6-((*R*)-1-cyclopropylpropylamino)-9*H*-purin-9-yl)bicyclo[3.1.0]hexane-2,3-diol (12). Dowex 50 resin (5 mg) was added to a solution of compound **25** (10 mg, 0.024 mmol) in methanol (0.5 mL) and water (0.5 mL) and the mixture stirred at room temperature overnight. The reaction mixture was filtered on a Celite bed, the filtrate was evaporated under vacuum, and the residue was purified by flash silica gel column chromatography (CH₂Cl₂:MeOH = 30:1) to give the desired compound **12** (6.1 mg, 69%) as a syrup: ¹H NMR (CD₃OD, 400 MHz) δ 8.15 (s, 1H), 4.79 (s, 1H), 4.71 (t, *J* = 5.6 Hz, 1H), 3.89 (d, *J* = 6.8 Hz, 1H), 3.66 (br s, 1H), 2.00–1.97 (m, 1H), 1.84–1.65 (m, 3H), 1.34–1.28 (m, 2H), 1.01 (t, *J* = 7.6 Hz, 3H), 0.80–0.74 (m, 1H), 0.60–0.58 (m, 1H), 0.45–0.42 (m, 2H), 0.36–0.32 (m, 1H); HRMS calcd for C₁₇H₂₃ClN₅O₂ (M + H)⁺ 364.1540, found 364.1538.

(1*R*,2*R*,3*S*,4*R*,5*S*)-4-(2-Chloro-6-((*S*)-1-cyclopropylpropylamino)-9*H*-purin-9-yl)bicyclo[3.1.0]hexane-2,3-diol (13). Dowex 50 resin (3 mg) was added to a solution of compound 26 (7 mg, 0.017 mmol) in methanol (0.3 mL) and water (0.3 mL) and the mixture stirred at room temperature overnight. The reaction mixture was filtered on a Celite bed, the filtrate was evaporated under vacuum, and the residue was purified by flash silica gel column chromatography (CH₂Cl₂:MeOH = 30:1) to give the desired compound 13 (4.3 mg, 68%) as a syrup: ¹H NMR (CD₃OD, 400 MHz) δ 8.15 (*s*, 1H), 4.79 (*s*, 1H), 4.71 (*t*, *J* = 5.6 Hz, 1H), 3.89 (*d*, *J* = 6.8 Hz, 1H), 3.67 (br *s*, 1H), 2.02–1.98 (m, 1H), 1.86–1.59 (m, 3H), 1.32–1.24 (m, 2H), 1.01 (*t*, *J* = 7.6 Hz, 3H), 0.78–0.76 (m, 1H), 0.59–0.57 (m, 1H), 0.45–0.42 (m, 2H), 0.34–0.32 (m, 1H); HRMS calcd for C₁₇H₂₃ClN₅O₂ (M + H)⁺ 364.1540, found 364.1535.

(1*R*,2*R*,35,4*R*,55)-4-(2-Chloro-6-((*R*)-1-cyclopropyl-2-methylpropylamino)-9H-purin-9-yl)bicyclo[3.1.0]hexane-2,3-diol (14). Dowex 50 resin (7 mg) was added to a solution of compound 27 (10.71 mg, 0.025 mmol) in methanol (0.6 mL) and water (0.5 mL) and the mixture stirred at room temperature overnight. The reaction mixture was filtered on a Celite bed, the filtrate was evaporated under vacuum, and the residue was purified by flash silica gel column chromatography (CH₂Cl₂:MeOH = 35:1) to give the desired compound 14 (7.82 mg, 82%) as a syrup: ¹H NMR (CD₃OD, 400 MHz) δ 8.17 (s, 1H), 4.79 (s, 1H), 4.71 (t, *J* = 5.6 Hz, 1H), 3.89 (d, *J* = 6.4 Hz, 1H), 3.62 (t, *J* = 7.2 Hz, 1H), 2.07–1.97 (m, 2H), 1.88–1.64 (m, 1H), 1.36–1.31 (m, 1H), 1.08–1.05 (m, 8H), 0.80–0.74 (m, 1H), 0.66–0.61 (m, 1H), 0.45–0.36 (m, 2H); HRMS calcd for C₁₈H₂₅ClN₅O₂ (M + H)⁺ 378.1697, found 378.1691.

(1*R*,2*R*,3*S*,4*R*,5*S*)-4-(2-*Chloro*-6-((*S*)-1-*cyclopropyl*-2-*methyl*-*propylamino*)-9*H*-*purin*-9-*yl*)*bicyclo*[3.1.0]*hexane*-2,3-*diol* (**15**). Dowex 50 resin (5 mg) was added to a solution of compound **28** (6.8 mg, 0.016 mmol) in methanol (0.5 mL) and water (0.5 mL) and the mixture stirred at room temperature overnight. The reaction mixture was filtered on a Celite bed, the filtrate was evaporated under vacuum, and the residue was purified by flash silica gel column chromatography (CH₂Cl₂:MeOH = 35:1) to give the desired compound **15** (4.8 mg, 81%) as a syrup: ¹H NMR (CD₃OD, 400 MHz) δ 8.17 (s, 1H), 4.79 (s, 1H), 4.71 (t, *J* = 5.6 Hz, 1H), 3.89 (d, *J* = 6.4 Hz, 1H), 3.63 (t, *J* = 7.2 Hz, 1H), 2.09–1.96 (m, 2H), 1.86–1.64 (m, 1H), 1.34–1.30 (m, 1H), 1.08–1.05 (m, 8H), 0.80–0.74 (m, 1H), 0.65–0.61 (m, 1H), 0.45–0.36 (m, 2H); HRMS calcd for C₁₈H₂₅ClN₅O₂ (M + H)⁺ 378.1697, found 378.1694.

(1R,2R,3S,4R,5S)-4-(2-Chloro-6-((R)-cyclopropylcyclobutylmethylamino)-9H-purin-9-yl)bicyclo[3.1.0]hexane-2,3-diol (16). Dowex 50 resin (4 mg) was added to a solution of compound **29** (5.9 mg, 0.013 mmol) in methanol (0.4 mL) and water (0.4 mL) and the mixture stirred at room temperature for 7 h. The reaction mixture was filtered on a Celite bed, the filtrate was evaporated under vacuum, and the residue was purified by flash silica gel column chromatography (CH₂Cl₂:MeOH = 30:1) to give the desired compound **16** (3.9 mg, 74%) as an oil: ¹H NMR (CD₃OD, 400 MHz) δ 8.15 (s, 1H), 4.79 (s, 1H), 4.71 (t, *J* = 5.6 Hz, 1H), 3.89 (d, *J* = 6.4 Hz, 1H), 3.73 (br s, 1H), 2.69–2.64 (m, 1H), 2.10–2.07 (m, 1H), 2.01–1.91 (m, 4H), 1.89–1.80 (m, 1H), 1.69–1.65 (m, 1H), 1.34–1.30 (m, 3H), 0.95–0.91 (m, 1H), 0.78–0.74 (m, 1H), 0.56–0.53 (m, 1H), 0.40–0.36 (m, 2H); HRMS calcd for C₁₉H₂₅ClN₅O₂ (M + H)⁺ 390.1697, found 390.1711.

(1*R*,2*R*,3*S*,4*R*,5*S*)-4-(2-*Chloro-6-((S)-cyclopropylcyclobutylmethylamino)-9H-purin-9-yl)bicyclo[3.1.0]hexane-2,3-diol (17).* Dowex 50 resin (6 mg) was added to a solution of compound **30** (7.95 mg, 0.018 mmol) in methanol (0.6 mL) and water (0.4 mL) and the mixture stirred at room temperature for 7 h. The reaction mixture was filtered on a Celite bed, the filtrate was evaporated under vacuum, and the residue was purified by flash silica gel column chromatography (CH₂Cl₂:MeOH = 30:1) to give the desired compound **17** (5.3 mg, 74%) as an oil: ¹H NMR (CD₃OD, 400 MHz) δ 8.15 (s, 1H), 4.79 (s, 1H), 4.71 (t, *J* = 5.6 Hz, 1H), 3.89 (d, *J* = 6.4 Hz, 1H), 3.73 (br s, 1H), 2.69–2.62 (m, 1H), 2.12–2.07 (m, 1H), 2.03–1.88 (m, 4H), 1.89–1.80 (m, 1H), 1.69–1.65 (m, 1H), 1.34–1.31 (m, 3H), 0.95–0.91 (m, 1H), 0.78–0.76 (m, 1H), 0.56–0.53 (m, 1H), 0.40–0.36 (m, 2H); HRMS calcd for C₁₉H₂₅ClN₅O₂ (M + H)⁺ 390.1697, found 390.1697.

(1*R*,2*R*,3*S*,4*R*,5*S*)-4-(2-Chloro-6-((*R*)-1,2-dicyclopropylethylamino)-9*H*-purin-9-yl)bicyclo[3.1.0]hexane-2,3-diol (18). Dowex 50 resin (3 mg) was added to a solution of compound **31** (4.94 mg, 0.018 mmol) in methanol (0.3 mL) and water (0.3 mL) and the mixture stirred at room temperature for 7 h. The reaction mixture was filtered on a Celite bed, the filtrate was evaporated under vacuum, and the residue was purified by flash silica gel column chromatography (CH₂Cl₂:MeOH = 35:1) to give the desired compound **18** (3.4 mg, 78%) as a syrup: ¹H NMR (CD₃OD, 400 MHz) δ 8.15 (s, 1H), 4.79 (s, 1H), 4.71 (t, *J* = 5.6 Hz, 1H), 3.89 (d, *J* = 6.8 Hz, 1H), 3.80 (br s, 1H), 2.02–1.97 (m, 1H), 1.70–1.61 (m, 2H), 1.34–1.30 (m, 3H), 1.10–1.08 (m, 1H), 0.91–0.76 (m, 2H), 0.62–0.58 (m, 1H), 0.47– 0.36 (m, 4H), 0.17–0.07 (m, 2H); HRMS calcd for C₁₉H₂₅ClN₅O₂ (M + H)⁺ 390.1697, found 390.1691.

(1*R*,2*R*,35,4*R*,55)-4-(2-Chloro-6-((S)-1,2-dicyclopropylethylamino)-9*H*-purin-9-yl)bicyclo[3.1.0]hexane-2,3-diol (19). Dowex 50 resin (5 mg) was added to a solution of compound 32 (7.6 mg, 0.019 mmol) in methanol (0.5 mL) and water (0.5 mL) and the mixture stirred at room temperature for 7 h. The reaction mixture was filtered on a Celite bed, the filtrate was evaporated under vacuum, and the residue was purified by flash silica gel column chromatography (CH₂Cl₂:MeOH = 35:1) to give the desired compound 19 (5.2 mg, 76%) as a syrup: ¹H NMR (CD₃OD, 400 MHz) δ 8.15 (s, 1H), 4.79 (s, 1H), 4.71 (t, *J* = 5.6 Hz, 1H), 3.89 (d, *J* = 6.8 Hz, 1H), 3.80 (br s, 1H), 2.00–1.97 (m, 1H), 1.69–1.61 (m, 2H), 1.34–1.30 (m, 3H), 1.10–1.08 (m, 1H), 0.89–0.75 (m, 2H), 0.60–0.59 (m, 1H), 0.47– 0.36 (m, 4H), 0.17–0.07 (m, 2H); HRMS calcd for C₁₉H₂₅ClN₅O₂ (M + H)⁺ 390.1697, found 390.1697.

(1*R*,2*R*,3*S*,4*R*,5*S*)-4-(2-Chloro-6-((*R*)-cyclopropylphenylmethylamino)-9*H*-purin-9-yl)bicyclo[3.1.0]hexane-2,3-diol (**20**). Dowex 50 resin (5 mg) was added to a solution of compound **33** (6.6 mg, 0.014 mmol) in methanol (0.6 mL) and water (0.4 mL) and the mixture stirred at room temperature for 7 h. The reaction mixture was filtered on a Celite bed, the filtrate was evaporated under vacuum and the residue was purified by flash silica gel column chromatography (CH₂Cl₂:MeOH = 30:1) to give the desired compound **20** (4.8 mg, 80%) as a syrup: ¹H NMR (CD₃OD, 400 MHz) δ 8.16 (s, 1H), 7.48 (d, *J* = 7.6 Hz, 2H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.26 (t, *J* = 7.6 Hz, 1H), 4.78 (s, 2H), 4.69 (t, *J* = 5.6 Hz, 1H), 3.88 (t, *J* = 7.2 Hz, 1H), 2.01– 1.95 (m, 1H), 1.68–1.63 (m, 1H), 1.42–1.30 (m, 2H), 0.79–0.73 (m, 1H), 0.65–0.62 (m, 2H), 0.54–0.51 (m, 2H); HRMS calcd for C₂₁H₂₃ClN₅O₂ (M + H)⁺ 412.1540, found 412.1533.

(1Ř,2R,3Š,4Ř,5S)-4-(2-Chloro-6-((S)-cyclopropylphenylmethylamino)-9H-purin-9-yl)bicyclo[3.1.0]hexane-2,3-diol (21). Dowex 50 resin (7 mg) was added to a solution of compound 34 (8.6 mg, 0.019 mmol) in methanol (0.8 mL) and water (0.4 mL) and the mixture stirred at room temperature for 7 h. The reaction mixture was filtered on a Celite bed, the filtrate was evaporated under vacuum, and the residue was purified by flash silica gel column chromatography (CH₂Cl₂:MeOH = 30:1) to give the desired compound 21 (6.2 mg, 79%) as a syrup: ¹H NMR (CD₃OD, 400 MHz) δ 8.17 (s, 1H), 7.48 (d, *J* = 7.6 Hz, 2H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.24 (t, *J* = 7.2 Hz, 1H), 4.78 (s, 2H), 4.71 (t, *J* = 5.2 Hz, 1H), 3.88 (t, *J* = 7.6 Hz, 1H), 2.02–1.95 (m, 1H), 1.68–1.65 (m, 1H), 1.43–1.30 (m, 2H), 0.79–0.73 (m, 1H), 0.65–0.60 (m, 2H), 0.54–0.47 (m, 2H); HRMS calcd for C₂₁H₂₃ClN₅O₂ (M + H)⁺ 412.1540, found 412.1544.

(1*R*,2*R*,3*S*,4*R*,5*S*)-4-(2-Chloro-6-(2,2-dicyclopropylethylamino)-9*H*-purin-9-yl)-2,3-O-(isopropylidene)bicyclo[3.1.0]hexane (**23**). 2,2-Dicyclopropylethylamine (38 mg, 0.30 mmol) and triethylamine (0.12 mL, 0.84 mmol) were added to a solution of compound **22a** (20.91 mg, 0.061 mmol) in methanol (1.5 mL), and the mixture was stirred at room temperature overnight. The reaction mixture was evaporated under vacuum and the residue was purified by flash column chromatography (hexane:ethyl acetate = 1:1) to give the desired product **23** (22 mg, 84%) as a syrup: ¹H NMR (CD₃OD, 400 MHz) δ 8.14 (s, 1H), 5.36 (t, *J* = 6.0 Hz, 1H), 4.97 (s, 1H), 4.69 (d, *J* = 7.2 Hz, 1H), 3.73 (d, *J* = 6.4 Hz, 2H), 2.09–2.03 (m, 1H), 1.76–1.71 (m, 1H), 1.52 (s, 3H), 1.25 (s, 3H), 0.95–0.90 (m, 2H), 0.75–0.72 (m, 2H), 0.51–0.42 (m, 5H), 0.28–0.17 (m, 4H); HRMS calcd for C₂₂H₂₉ClN₅O₂ (M + H)⁺ 430.2010, found 430.2013.

(1*R*,2*R*,35,4*R*,55)-4-(2-Chloro-6-((*R*)-1-cyclopropylpropylamino)-9*H*-purin-9-yl)-2,3-O-(isopropylidene)bicyclo[3.1.0]hexane (25). (*R*)-1-Cyclopropylpropylamine hydrochloride (16.16 mg, 0.11 mmol) and triethylamine (0.11 mL, 0.82 mmol) were added to a solution of compound 22a (20.33 mg, 0.05 mmol) in methanol (1.5 mL), and the mixture was stirred at room temperature overnight. The reaction mixture was evaporated under vacuum and the residue was purified by flash column chromatography (hexane:ethyl acetate = 1:1) to give the desired product 25 (18.7 mg, 78%) as a foamy syrup: ¹H NMR (CD₃OD, 400 MHz) δ 8.13 (s, 1H), 5.36 (t, *J* = 6.4 Hz, 1H), 4.96 (s, 1H), 4.69 (d, *J* = 7.2 Hz, 1H), 3.66 (br s, 1H), 2.07–2.04 (m, 1H), 1.86–1.79 (m, 1H), 1.77–1.70 (m, 2H), 1.52 (s, 3H), 1.25 (s, 3H), 1.03–0.99 (m, 4H), 0.95–0.90 (m, 2H), 0.62–0.56 (m, 1H), 0.45–0.41 (m, 2H), 0.36–0.33 (m, 1H); HRMS calcd for C₂₀H₂₇ClN₅O₂ (M + H)⁺ 404.1853, found 404.1855.

(1*R*,2*R*,3*S*,4*R*,5*S*)-4-(2-Chloro-6-((*S*)-1-cyclopropylpropylamino)-9*H*-purin-9-yl)-2,3-O-(isopropylidene)bicyclo[3.1.0]hexane (**26**). (*S*)-1-Cyclopropylpropylamine hydrochloride (32.8 mg, 0.11 mmol) and triethylamine (0.11 mL, 0.82 mmol) were added to a solution of compound **22a** (20.43 mg, 0.05 mmol) in methanol (1.5 mL), and the mixture was stirred at room temperature overnight. The reaction mixture was evaporated under vacuum and the residue was purified by flash column chromatography (hexane:ethyl acetate = 1:1) to give the desired product **26** (16.6 mg, 80%) as a syrup: ¹H NMR (CD₃OD, 400 MHz) δ 8.13 (s, 1H), 5.36 (t, *J* = 6.4 Hz, 1H), 4.96 (s, 1H), 4.69 (d, *J* = 7.2 Hz, 1H), 3.67 (br s, 1H), 2.09–2.03 (m, 1H), 1.88–1.79 (m, 1H), 1.77–1.72 (m, 2H), 1.52 (s, 3H), 1.25 (s, 3H), 1.03–0.99 (m, 4H), 0.96–0.89 (m, 2H), 0.61–0.56 (m, 1H), 0.47–0.41 (m, 2H), 0.36–0.30 (m, 1H); HRMS calcd for C₂₀H₂₇ClN₅O₂ (M + H)⁺ 404.1853, found 404.1854.

(1*R*,2*R*,3*S*,4*R*,5*S*)-4-(2-Chloro-6-((*R*)-1-cyclopropyl-2-methylpropylamino)-9*H*-purin-9-yl)-2,3-O-(isopropylidene)bicyclo[3.1.0]hexane (**27**). (*R*)-1-Cyclopropyl-2-methylpropylamine hydrochloride (18.22 mg, 0.12 mmol) and triethylamine (0.11 mL, 0.85 mmol) were added to a solution of compound **22a** (20.78 mg, 0.06 mmol) in methanol (1.5 mL), and the mixture was stirred at room temperature overnight. The reaction mixture was evaporated under vacuum and the residue was purified by flash column chromatography (hexane:ethyl acetate = 1:1) to give the desired product **27** (19 mg, 75%) as a syrup: ¹H NMR (CD₃OD, 400 MHz) δ 8.15 (s, 1H), 5.36 (t, *J* = 6.0 Hz, 1H), 4.97 (s, 1H), 4.70 (d, *J* = 6.4 Hz, 1H), 3.62 (t, *J* = 7.2 Hz, 1H), 2.08–2.03 (m, 1H), 1.76–1.72 (m, 1H), 1.52 (s, 3H), 1.25 (m, 4H), 1.08–1.05 (m, 7H), 0.96–0.88 (m, 2H), 0.65–0.61 (m, 1H), 0.45–0.36 (m, 2H); HRMS calcd for C₂₁H₂₉CIN₅O₂ (M + H)⁺ 418.2010, found 418.2004.

(1*R*,2*R*,3*S*,4*R*,5*S*)-4-(2-Chloro-6-((*S*)-1-cyclopropyl-2-methylpropylamino)-9H-purin-9-yl)-2,3-O-(isopropylidene)bicyclo[3.1.0]hexane (**28**). (*S*)-1-Cyclopropyl-2-methylpropylamine hydrochloride (16.5 mg, 0.12 mmol) and triethylamine (0.12 mL, 0.84 mmol) were added to a solution of compound **22a** (20.85 mg, 0.06 mmol) in methanol (1.5 mL), and the mixture was stirred at room temperature overnight. The reaction mixture was evaporated under vacuum and the residue was purified by flash column chromatography (hexane:ethyl acetate = 1:1) to give the desired product **28** (19.8 mg, 78%) as a syrup: ¹H NMR (CD₃OD, 400 MHz) δ 8.15 (s, 1H), 5.36 (t, *J* = 6.0 Hz, 1H), 4.97 (s, 1H), 4.71 (d, *J* = 6.4 Hz, 1H), 3.61 (t, *J* = 7.2 Hz, 1H), 2.08–2.04 (m, 1H), 1.76–1.71 (m, 1H), 1.51 (s, 3H), 1.25 (m, 4H), 1.08–1.05 (m, 7H), 0.96–0.88 (m, 2H), 0.65–0.61 (m, 1H), 0.45–0.36 (m, 2H); HRMS calcd for C₂₁H₂₉ClN₅O₂ (M + H)⁺ 418.2010, found 418.2017.

(1*R*,2*R*,3*S*,4*R*,5*S*)-4-(2-*Chloro-6-((R)-cyclopropylcyclobutylmethylamino)-9H-purin-9-yl)-2,3-O-(isopropylidene)bicyclo[3.1.0]hexane (29). (<i>R*)-Cyclopropylcyclobutylmethylamine hydrochloride (28.3 mg, 0.17 mmol) and triethylamine (0.11 mL, 0.81 mmol) were added to a solution of compound **22a** (19.92 mg, 0.05 mmol) in methanol (1.5 mL), and the mixture was stirred at room temperature overnight. The reaction mixture was evaporated under vacuum and the residue was purified by flash column chromatography (hexane:ethyl acetate = 1:1) to give the desired product **29** (20.8 mg, 83%) as a syrup: ¹H NMR (CD₃OD, 400 MHz) δ 8.15 (s, 1H), 5.36 (t, *J* = 6.0 Hz, 1H), 4.96 (s, 1H), 4.69 (d, *J* = 7.2 Hz, 1H), 3.85 (br s, 1H), 2.72–2.67 (m, 1H), 2.10–2.89 (m, 6H), 1.87–1.71 (m, 2H), 1.52 (s, 3H), 1.25 (s, 3H), 0.96–0.89 (m, 3H), 0.58–0.53 (m, 1H), 0.39–0.36 (m, 3H); HRMS calcd for C₂₂H₂₉ClN₅O₂ (M + H)⁺ 430.2010, found 430.2018.

(1*R*,2*R*,3*5*,4*R*,55)-4-(2-*Chloro-6*-((*S*)-*cyclopropylcyclobutylmethylamino*)-9*H*-*purin*-9-*yl*)-2,3-O-(*isopropylidene*)*bicyclo*[3.1.0]*hexane* (**30**). (*S*)-Cyclopropylcyclobutylmethylamine hydrochloride (35.8 mg, 0.22 mmol) and triethylamine (0.14 mL, 1.03 mmol) were added to a solution of compound **22a** (25.2 mg, 0.73 mmol) in methanol (1.5 mL), and the mixture was stirred at room temperature overnight. The reaction mixture was evaporated under vacuum and the residue was purified by flash column chromatography (hexane:ethyl acetate = 1:1) to give the desired product **30** (26 mg, 82%) as a syrup: ¹H NMR (CD₃OD, 400 MHz) δ 8.13 (s, 1H), 5.36 (t, *J* = 6.0 Hz, 1H), 4.96 (s, 1H), 4.69 (d, *J* = 7.2 Hz, 1H), 3.84 (br s, 1H), 2.71–2.67 (m, 1H), 2.09–2.89 (m, 6H), 1.87–1.71 (m, 2H), 1.51 (s, 3H), 1.25 (s, 3H), 0.95–0.88 (m, 3H), 0.58–0.54 (m, 1H), 0.37–0.36 (m, 3H); HRMS calcd for C₂₂H₂₉ClN₅O₂ (M + H)⁺ 430.2010, found 430.2008.

(1*R*,2*R*,35,4*R*,55)-4-(2-Chloro-6-((*R*)-1,2-dicyclopropylethylamino)-9*H*-purin-9-yl)-2,3-O-(isopropylidene)bicyclo[3.1.0]hexane (**31**). (*R*)-1,2-Dicyclopropylethylamine hydrochloride (28.4 mg, 0.17 mmol) and triethylamine (0.11 mL, 0.82 mmol) were added to a solution of compound **22a** (20.0 mg, 0.05 mmol) in methanol (1.5 mL), and the mixture was stirred at room temperature overnight. The reaction mixture was evaporated under vacuum and the residue was purified by flash column chromatography (hexane:ethyl acetate = 1:1) to give the desired product **31** (18.8 mg, 75%) as a foamy syrup: ¹H NMR (CD₃OD, 400 MHz) δ 8.13 (s, 1H), 5.36 (t, *J* = 6.4 Hz, 1H), 4.96 (s, 1H), 4.69 (d, *J* = 7.2 Hz, 1H), 3.80 (br s, 1H), 2.06–2.03 (m, 1H), 1.73–1.57 (m, 3H), 1.51 (s, 3H), 1.25 (s, 3H), 1.09–1.06 (m, 1H), 0.94–0.85 (m, 3H), 0.60–0.58 (m, 1H), 0.44–0.35 (m, 5H), 0.17– 0.16 (m, 1H), 0.09–0.07 (m, 1H); HRMS calcd for C₂₂H₂₉ClN₅O₂ (M + H)⁺ 430.2010, found 430.2025.

(1*R*,2*R*,3*S*,4*R*,5*S*)-4-(2-Chloro-6-((*S*)-1,2-dicyclopropylethylamino)-9*H*-purin-9-yl)-2,3-O-(isopropylidene)bicyclo[3.1.0]hexane (**32**). (*S*)-1,2-Dicyclopropylethylamine hydrochloride (31.5 mg, 0.19 mmol) and triethylamine (0.12 mL, 0.91 mmol) were added to a solution of compound **22a** (22.21 mg, 0.05 mmol) in methanol (1.5 mL), and the mixture was stirred at room temperature overnight. The reaction mixture was evaporated under vacuum and the residue was purified by flash column chromatography (hexane:ethyl acetate = 1:1) to give the desired product **32** (21.5 mg, 77%) as a syrup: ¹H NMR (CD₃OD, 400 MHz) δ 8.13 (s, 1H), 5.36 (t, *J* = 6.4 Hz, 1H), 4.96 (s, 1H), 4.69 (d, *J* = 7.2 Hz, 1H), 3.80 (br s, 1H), 2.07–2.03 (m, 1H), 1.74–1.58 (m, 3H), 1.51 (s, 3H), 1.25 (s, 3H), 1.09–1.05 (m, 1H), 0.95–0.84 (m, 3H), 0.60–0.58 (m, 1H), 0.44–0.35 (m, 5H), 0.17–0.15 (m, 1H), 0.09–0.07 (m, 1H); HRMS calcd for $C_{22}H_{29}ClN_5O_2$ (M + H)⁺ 430.2010, found 430.2002.

(1R,2R,3S,4R,5S)-4-(2-Chloro-6-((R)-N-cyclopropyl-N-phenylmethylamino)-9H-purin-9-yl)-2,3-O-(isopropylidene)bicyclo[3.1.0]hexane (33). (R)-N-Cyclopropyl-N-phenylmethylamine hydrochloride (22 mg, 0.12 mmol) and triethylamine (0.11 mL, 0.84 mmol) were added to a solution of compound 22a (20.68 mg, 0.06 mmol) in methanol (1.5 mL), and the mixture was stirred at room temperature overnight. The reaction mixture was evaporated under vacuum and the residue was purified by flash column chromatography (hexane:ethyl acetate = 1:2) to give the desired product 33 (22.15 mg, 81%) as a syrup: ¹H NMR (CD₃OD, 400 MHz) δ 8.15 (s, 1H), 7.48 (d, J = 7.6 Hz, 2H), 7.33 (t, J = 7.6 Hz, 2H), 2.24 (t, J = 7.2 Hz, 1H), 5.35 (t, J = 6.0 Hz, 1H), 4.95 (s, 1H), 4.69 (d, J = 7.2 Hz, 1H), 3.60 (br s, 1H), 2.06-2.03 (m, 1H), 1.74-1.71 (m, 1H), 1.51 (s, 3H), 1.43-1.37 (m, 1H), 1.24 (s, 3H), 0.94-0.89 (m, 2H), 0.65-0.63 (m, 2H), 0.53-0.46 (m, 2H); HRMS calcd for $C_{24}H_{27}ClN_5O_2$ (M + H)⁺ 452.1853, found 452.1858.

(1R,2R,3S,4R,5S)-4-(2-Chloro-6-((S)-N-cyclopropyl-N-phenylmethylamino)-9H-purin-9-yl)-2,3-O-(isopropylidene)bicyclo[3.1.0]hexane (34). (S)-N-Cyclopropyl-N-phenylmethylamine hydrochloride (32.8 mg, 0.17 mmol) and triethylamine (0.11 mL, 0.84 mmol) were added to a solution of compound 22a (20.43 mg, 0.06 mmol) in methanol (1.5 mL), and the mixture was stirred at room temperature overnight. The reaction mixture was evaporated under vacuum and the residue was purified by flash column chromatography (hexane:ethyl acetate = 1:2) to give the desired product 34 (22.1 mg, 82%) as a syrup: ¹H NMR (CD₃OD, 400 MHz) δ 8.15 (s, 1H), 7.48 (d, J = 7.2 Hz, 2H), 7.33 (t, J = 7.6 Hz, 2H), 2.24 (t, J = 7.2 Hz, 1H), 5.35 (t, J = 6.8 Hz, 1H), 4.95 (s, 1H), 4.69 (d, J = 7.2 Hz, 1H), 3.60 (br s, 1H), 2.06-2.03 (m, 1H), 1.75-1.71 (m, 1H), 1.51 (s, 3H), 1.42-1.37 (m, 1H), 1.24 (s, 3H), 0.96-0.88 (m, 2H), 0.66-0.62 (m, 2H), 0.54-0.43 (m, 2H); HRMS calcd for $C_{24}H_{27}ClN_5O_2$ (M + H)⁺ 452.1853, found 452 1856

Molecular Modeling. hA_1AR and hA_3AR Homology Models. Previously reported molecular models of the hA_1AR and hA_3AR , built using the alignment and the homology modeling tools implemented in the program Molecular Operating Environment (MOE),⁴⁵ were used in this study. Both models were built using as template the crystal structure of the human $A_{2A}AR$ cocrystallized with the agonist **50** (PDB ID: 3QAK),²² as described by Tosh et al.²⁰ In particular, hA_1AR and hA_3AR sequences were retrieved from the UniProt database⁴⁶ and aligned against the sequence of the $A_{2A}AR$ template, taking into account the highly conserved residues in each TM domain. Then, homology models were built using the automated Homology Modeling protocol implemented in the MOE suite.

Molecular Docking of Truncated Methanocarba Derivatives in the hA_1AR and hA_3AR Models. Compounds structures were built using the builder tool implemented in the MOE suite⁴⁸ and subjected to energy minimization using the MMFF94x force field, until a rms gradient of 0.05. The minimized conformations of each compound were used as a starting point for the docking study. The flexible docking of the ligands in the hA_1AR and hA_3AR models was performed by means of the Glide⁴⁷ package part of the Schrödinger suite.⁴⁸

The docking site was defined with key residues in the binding pocket of the hA₁AR and hA₃AR models, namely Phe(EL2), Asn(6.55), Trp(6.48) and His(7.43), and a 20 Å \times 20 Å \times 20 Å box was centered on those residues. Docking of the ligands was performed in the rigid binding site of the models with Glide using the XP (extra precision) procedure.

The top scoring docking conformations were retained and subjected to the receptor sampling by means of the Refinement module in Prime.⁴⁹ The Prime side chain sampling was performed on all the residues within a 6 Å of the ligand. The refined model for each ligand was chosen as the final binding conformation.

In Vivo Testing. Animals and Test Substances Used for Seizure Testing. Adult male CF No. 1 albino mice (26–30 g, 6 Hz; 18–25 g all other tests) were obtained from Charles River, Portage, MI. Animals were housed in an Association for Assessment and

Journal of Medicinal Chemistry

Accreditation of Laboratory Animal Care, International (AAALAC)accredited temperature and humidity controlled facility and maintained on a standard 12 h:12 h light–dark cycle (lights on at 0600) with free access to standard laboratory chow (Prolab RMH 3000) and water ad libitum. All animal experiments were performed in accordance with the guidelines set by National Institutes of Health and the University of Utah Institutional Animal Care and Use Committee (IACUC) committee. All animals were allowed free access to both food and water except when they were removed from their cages for the experimental procedure. Except for the kindling studies, animals were used once. All animals were euthanized in accordance with the Institute of Laboratory Resources policies on the humane care of laboratory animals.

Anticonvulsant Tests. In vivo anticonvulsant activity was established by both electrical and chemoconvulsant seizure tests that have been described previously.⁵⁰⁻⁵² The electrical tests used were the maximal electroshock (MES) seizure test, the 6 Hz minimal clonic seizure test, and the corneal kindled mouse test. The chemical test was the sc metrazol seizure tests. TPE is deduced from data generated in initial qualitative test procedures. Five groups of four animals each are administered the test compound, and each group is tested at one of five different time intervals: 0.25, 0.5, 1, 2, and 4 h. The time point at which the compound produces the most activity/toxicity was chosen as TPE.

MES Test and 6 Hz Test. For the MES and 6 Hz tests, a drop of anesthetic/electrolyte solution (0.5% tetracaine hydrochloride in 0.9% saline) was applied to the eyes of each animal prior to placement of the corneal electrodes. The electrical stimulus in the MES test was 50 mA, 60 Hz, for mice. Abolition of the hind leg tonic extensor component of the seizure was used as the end point.

The ability of the test substance to prevent seizures in mice induced by 6 Hz corneal stimulation (32 mA, 3 s duration) was evaluated at a convulsive current that evokes a seizure in 97% of the population tested (CC_{97}). Six hertz seizures are characterized by a minimal clonic phase that is followed by stereotyped, automatiztic behaviors described originally as being similar to the aura of human patients with partial seizures.^{53,54} Animals not displaying this behavior were considered protected.

Corneal-Kindled Mouse Model of Partial Seizures. Mice were kindled according to the methods described by Matagne and Klitgaard.55 Briefly, mice were stimulated twice daily with a corneal stimulation of 3 mA for 3 s for an average of 12 days. Prior to each stimulation, a drop of 0.9% saline containing 0.5% tetracaine hydrochloride (Sigma-Aldrich, St. Louis, MO) was applied to the cornea to ensure local anesthesia and good electrical conductivity. Stimulations were at least 4 h apart. Animals were considered kindled when they displayed five consecutive stage 5 seizures according to the Racine scale.⁵⁶ At the completion of the kindling acquisition, mice were permitted at least a 3-day stimulation-free period prior to any drug testing. Mice were stimulated once the day before drug testing to ensure they had achieved and maintained a kindled state. On the day of the drug study, corneal kindled mice (n = 4 or 8) received a single ip dose of test compound. Mice were challenged with the corneal kindling stimulus of 3 mA for 3 s at TPE after test compound administration. Mice were scored as protected (seizure score of ± 3) or not protected (seizure score ≥ 4) based on the Racine scoring.⁵

Minimal Behavioral Toxicity Tests. Minimal behavioral toxicity was identified in mice by the rotarod performance test.⁵⁷ When a mouse is placed on a 1-in. knurled rod that rotates at a speed of 6 rpm, the animal can maintain its equilibrium for long periods of time. The animal was considered toxic if it fell off this rotating rod three times during a 1-min period.

Determination of Median Effective (ED_{50}) or Behavioral Toxic Dose (TD_{50}). All quantitative in vivo anticonvulsant/toxicity studies were conducted at the previously determined TPE. Groups of at least eight mice were tested with various doses of the candidate drug until at least two points were established between the limits of 100% protection or minimal toxicity and 0% protection or minimal toxicity. The dose of drug required to produce the desired end point in 50% of animals (ED_{50} or TD_{50}) in each test, the 95% confidence interval, the slope of the regression line, and the SEM of the slope were then calculated by a computer program based on the method described by Finney. 58

Compound Administration. The test compound was administered at a concentration that permitted optimal accuracy of dosing without the volume contributing excessively to total body fluid. Thus, test compounds are administered to mice in a volume of 0.01 mL/g of body weight. Compound **10** or other AR agonist was initially dissolved in DMSO (50 mg/mL) as a stock solution. To prepare the formulation for testing, an appropriate amount of stock solution was first diluted in DMSO to achieve 10% DMSO (v/v) in the final volume. Then, 30% PEG400 (J. T. Baker) was gradually added to the aqueous DMSO solution to make the final formulation.

ASSOCIATED CONTENT

Supporting Information

Synthetic procedures for compounds 37 and 39–43, spectroscopic characterization, in vitro bioassay procedures, anticonvulsant data, and a modeling figure. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: kajacobs@helix.nih.gov. Tel.: 301-496-9024. Fax: 301-480-8422.

Author Contributions

[§]These authors contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Prof. Ray Stevens and Dr. Vsevolod Katrich (Scripps Res. Inst., La Jolla, CA) for helpful discussions, Dr. Noel Whittaker (NIDDK) for mass spectral determinations, and Intramural Research Program of the NIH, NIDDK for support. The in vivo antiseizure studies conducted at the University of Utah were supported by NINDS, NIH Contract No. HHSN271201100029C.

ABBREVIATIONS USED

ADAC, N^6 -[4-[[[4-[[[(2-aminoethyl)amino]carbonyl]methyl]anilino]carbonyl]methyl]phenyl]adenosine; AR, adenosine receptor; cyclic AMP, adenosine 3',5'-cyclic phosphate; BBB, blood-brain barrier; CCPA, 2-chloro- N^6 -cyclopentyladenosine; CHO, Chinese hamster ovary; GPCR, G-protein-coupled receptor; HEK, human embryonic kidney; ip, intraperitoneal; MES, maximal electroshock; MRS5127, (1'S,2'R,3'S,4'R,5'S)-4'-[2-chloro-6-(3-iodobenzylamino)purine]-2',3'-Odihydroxybicyclo[3.1.0]hexane; NECA, 5'-N-ethylcarboxamidoadenosine; PIA, N^6 -phenylisopropyladenosine; scMET, subcutaneous metrazol model; TM, transmembrane domain; TPE, time of peak effect; tPSA, total polar surface area.

REFERENCES

(1) Fredholm, B. B.; IJzerman, A. P.; Jacobson, K. A.; Linden, J.; Müller, C. Nomenclature and classification of adenosine receptors—An update. *Pharmacol. Rev.* **2011**, *63*, 1–34.

(2) Giorgi, I.; Nieri, P. Therapeutic potential of A_1 adenosine receptor ligands: A survey of recent patent literature. *Expert Opin. Ther. Patents* **2008**, *18*, 677–691.

(3) Albrecht-Küpper, B. E.; Leineweber, K.; Nell, P. G. Partial adenosine A_1 receptor agonists for cardiovascular therapies. *Purinergic Signal.* **2012**, 8 (Suppl 1), 91–99.

(4) (a) Zablocki, J. A.; Wu, L.; Shryock, J.; Belardinelli, L. Partial A_1 adenosine receptor agonists from a molecular perspective and their potential use as chronic ventricular rate control agents during atrial fibrillation (AF). *Curr. Top. Med. Chem.* **2004**, *4*, 839–854. (b) Elzein, E.; Zablocki, J. A_1 adenosine receptor agonists and their potential therapeutic applications. *Expert Opin. Invest. Drugs* **2008**, *17*, 1901–1910.

(5) Knutsen, L. J.; Lau, J.; Petersen, H.; Thomsen, C.; Weis, J. U.; Shalmi, M.; Judge, M. E.; Hansen, A. J.; Sheardown, M. J. N-substituted adenosines as novel neuroprotective A_1 agonists with diminished hypotensive effects. *J. Med. Chem.* **1999**, *42*, 3463–3477.

(6) von Lubitz, D. K. J. E.; Lin, R. C. S.; Paul, I. A.; Beenhakker, M.; Boyd, M.; Bischofberger, N.; Jacobson, K. A. Postischemic administration of adenosine amine congener (ADAC): Analysis of recovery in gerbils. *Eur. J. Pharmacol.* **1996**, *316*, 171–179.

(7) Concas, A.; Santoro, G.; Mascia, M. P.; Maciocco, E.; Dazzi, L.; Ongini, E.; Biggio, G. Anticonvulsant doses of 2-chloro- N^6 -cyclopentyladenosine, an adenosine A_1 receptor agonist, reduce GABAergic transmission in different areas of the mouse brain. *J. Pharmacol. Exp. Therap.* **1993**, *267*, 844–851.

(8) Gouder, N.; Fritschy, J. M.; Boison, D. Seizure suppression by adenosine A_1 receptor activation in a mouse model of pharmacoresistant epilepsy. *Epilepsia* **2003**, *44*, 877–885.

(9) Fedele, D. E.; Li, T.; Lan, J. Q.; Fredholm, B. B.; Boison, D. Adenosine A₁ receptors are crucial in keeping an epileptic focus localized. *Exp. Neurol.* **2006**, *200*, 184–190.

(10) Marek, G. J. Activation of adenosine1 (A_1) receptors induces antidepressant-like, anti-impulsive effects on differential-reinforcement-of-low rate 72-s behavior in rats. *J. Pharmacol. Exp. Therap.* **2012**, 341, 564–570.

(11) Prediger, R. D. S.; da Silva, G. E.; Batista, L. C.; Bittencourt, A. L.; Takahashi, R. N. Activation of adenosine A_1 receptors reduces anxiety-like behavior during acute ethanol withdrawal (Hangover) in mice. *Neuropsychopharmacology* **2006**, *31*, 2210–2220.

(12) Korboukh, I.; Hull-Ryde, E. A.; Rittner, J.; Randhawa, A. S.; Coleman, J.; Fitzpatrick, B. J.; Setola, V.; Janzen, W. P.; Frye, S. V.; Zylka, M. J.; Jin, J. Orally active adenosine A_1 receptor agonists with antinociceptive effects in mice. *J. Med. Chem.* **2012**, *55*, 6467–6477.

(13) Dunwiddie, T. V.; Fredholm, B. B. Adenosine A_1 receptors inhibit adenylate cyclase activity and neurotransmitter release and hyperpolarize pyramidal neurons in rat hippocampus. *J. Pharm. Exp. Ther.* **1989**, 249, 31–37.

(14) (a) Paul, S.; Elsinga, P. H.; Ishiwata, K.; Dierckx, R. A. J. O.; van Waarde, A. Adenosine A_1 receptors in the central nervous system: Their functions in health and disease, and possible elucidation by PET imaging. *Current Med. Chem.* **2011**, *18*, 4820–4835. (b) Nam, H. W.; McIver, S. R.; Hinton, D. J.; Thakkar, M. M.; Sari, Y.; Parkinson, F. E.; Haydon, P. G.; Choi, D. S. Adenosine and glutamate signaling in neuron-glial interactions: Implications in alcoholism and sleep disorders. *Alcohol.: Clin. Exp. Res.* **2012**, *36*, 1117–1125.

(15) Yan, L.; Burbiel, J. C.; Maass, A.; Müller, C. E. Adenosine receptor agonists: From basic medicinal chemistry to clinical development. *Expert Opin. Emerg. Drugs* **2003**, *8*, 537–576.

(16) Jacobson, K. A.; Ji, X. D.; Li, A. H.; Melman, N.; Siddiqui, M. A.; Shin, K. J.; Marquez, V. E.; Ravi, R. G. Methanocarba analogues of purine nucleosides as potent and selective adenosine receptor agonists. *J. Med. Chem.* **2000**, *43*, 2196–2203.

(17) Jeong, L. S.; Pal, S.; Choe, S. A.; Choi, W. J.; Jacobson, K. A.; Gao, Z. G.; Klutz, A. M.; Hou, X.; Kim, H. O.; Lee, H. W.; Lee, S. K.; Tosh, D. K.; Moon, H. R. Structure activity relationships of truncated D- and L- 4'-thioadenosine derivatives as species-independent A_3 adenosine receptor antagonists. *J. Med. Chem.* **2008**, *51*, 6609–6613.

(18) Melman, A.; Wang, B.; Joshi, B. V.; Gao, Z. G.; de Castro, S.; Heller, C. L; Kim, S. K.; Jeong, L. S.; Jacobson, K. A. Selective A_3 adenosine receptor antagonists derived from nucleosides containing a bicyclo[3.1.0]hexane ring system. *Bioorg. Med. Chem.* **2008**, *16*, 8546– 8556.

(19) Hou, X.; Kim, H. O.; Alexander, V.; Kim, K.; Choi, S.; Park, S. G.; Lee, J. H.; Yoo, L. S.; Gao, Z. G.; Jacobson, K. A.; Jeong, L. S.

Discovery of a new human A_{2A} adenosine receptor agonist, truncated 2-hexynyl 4'-thioadenosine. ACS Med. Chem. Lett. **2010**, 1, 516–520. (20) Tosh, D. K.; Phan, K.; Deflorian, F.; Wei, Q.; Gao, Z. G.; Jacobson, K. A. Truncated (N)-methanocarba nucleosides as A_1 adenosine receptor agonists and partial agonists: Overcoming lack of a recognition element. ACS Med. Chem. Lett. **2011**, 2, 626–631.

(21) Gao, Z. G.; Blaustein, J.; Gross, A. S.; Melman, N.; Jacobson, K. A. N^6 -Substituted adenosine derivatives: Selectivity, efficacy, and species differences at A_3 adenosine receptors. *Biochem. Pharmacol.* **2003**, *65*, 1675–1684.

(22) Xu, F.; Wu, H.; Katritch, V.; Han, G. W.; Jacobson, K. A.; Gao, Z. G.; Cherezov, V.; Stevens, R. C. Structure of an agonist-bound human A_{2A} adenosine receptor. *Science* **2011**, *332*, *322*–*327*.

(23) Elzein, E.; Kalla, R.; Li, X.; Perry, T.; Marquart, T.; Micklatcher, M.; Li, Y.; Wu, Y.; Zeng, D.; Zablocki, J. N^{6} -Cycloalkyl-2-substituted adenosine derivatives as selective, high affinity A_{1} adenosine receptor agonists. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 162–166.

(24) Gao, Z. G.; Kim, S. K.; Biadatti, T.; Chen, W.; Lee, K.; Barak, D.; Kim, S. G.; Johnson, C. R.; Jacobson, K. A. Structural determinants of A_3 adenosine receptor activation: Nucleoside ligands at the agonist/ antagonist boundary. *J. Med. Chem.* **2002**, *45*, 4471–4484.

(25) Tosh, D. K.; Paoletta, S.; Phan, K.; Gao, Z. G.; Jacobson, K. A. Truncated nucleosides as A_3 adenosine receptor ligands: Combined 2-arylethynyl and bicyclohexane substitutions. *ACS Med. Chem. Lett.* **2012**, *3*, 596–601.

(26) Klotz, K.-N.; Hessling, J.; Hegler, J.; Owman, C.; Kull, B.; Fredholm, B. B.; Lohse, M. J. Comparative pharmacology of human adenosine receptor subtypes—Characterization of stably transfected receptors in CHO cells. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1998**, 357, 1–9.

(27) Lebon, G.; Warne, T.; Edwards, P. C.; Bennett, K.; Langmead, C. J.; Leslie, A. G. W.; Tate, C. G. Agonist-bound adenosine A_{2A} receptor structures reveal common features of GPCR activation. *Nature* 2011, 474, 521–525.

(28) Ballesteros, J. A.; Weinstein, H. Integrated methods for the construction of three-dimensional models of structure-function relations in G protein-coupled receptors. *Methods Neurosci.* **1995**, *25*, 366–428.

(29) Swinyard, E. A.; Woodhead, J. H.; White, H. S.; Franklin, M. R. General principles: Experimental selection, quantification, and evaluation of anticonvulsants. In *Antiepileptic Drugs*; I Levy, R. H., Mattson, R. H., Meldrum, B., Penry, J. K., Dreifuss, F. E., Eds.; Raven Press; New York, 1989; pp 85–102.

(30) Vlajkovic, S. M.; Lee, K. H.; Wong, A. C. Y.; Guo, C. X.; Gupta, R.; Housley, G. D.; Thorne, P. R. Adenosine amine congener mitigates noise-induced cochlear injury. *Purinergic Signal.* **2010**, *6*, 273–281.

(31) Barton, M. E.; Klein, B. D.; Wolf, H. H.; White, H. S. Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. *Epilepsy Res.* 2001, 47, 217–227.

(32) Nikodijevic, O.; Sarges, R.; Daly, J. W.; Jacobson, K. A. Behavioral effects of A_1 - and A_2 -selective adenosine agonists and antagonists: Evidence for synergism and antagonism. *J. Pharm. Exp. Therap.* **1991**, 259, 286–294.

(33) Daly, J. W.; Padgett, W.; Thompson, R. D.; Kusachi, S.; Bugni, W. J.; Olsson, R. A. Structure–activity relationships for N^6 -substituted adenosines at a brain A_1 -adenosine receptor with a comparison to an A_2 -adenosine receptor regulating coronary blood flow. *Biochem. Pharmacol.* **1986**, *35*, 2467–2481.

(34) White, H. S.; Woodhead, J. H.; Wilcox, K. S.; Stables, J. P.; Kupferberg, H. J.; Wolf, H. H. Discovery and preclinical development of antiepileptic drugs. In *Antiepileptic Drugs*; Levy, R. H., Mattson, R. H., Meldrum, B., Perucca, E., Eds.; Lippincott Williams & Wilkins; New York, 2002; pp 36–48.

(35) Lothman, E. W.; Salerno, R. A.; Perlin, J. B.; Kaiser, D. L.
Screening and characterization of antiepileptic drugs with rapidly recurring hippocampal seizures in rats. *Epilepsy Res.* 1988, *2*, 366–379.
(36) Rowley, N. M.; White, H. S. Comparative anticonvulsant efficacy in the corneal kindled mouse model of partial epilepsy:

Journal of Medicinal Chemistry

Correlation with other seizure and epilepsy models. *Epilepsy Res.* 2010, 92, 163–169.

(37) Lauro, C.; Cipriani, R.; Catalano, M.; Trettel, F.; Chece, G.; Brusadin, V.; Antonilli, L.; van Rooijen, N.; Eusebi, F.; Fredholm, B. B.; Limatola, C. Adenosine A_1 receptors and microglial cells mediate CX3CL1-induced protection of hippocampal neurons against Gluinduced death. *Neuropsychopharmacol* **2010**, *35*, 1550–1559.

(38) Bueters, T. J.; IJzerman, A. P.; van Helden, H. P.; Danhof, M. Characterization of the pharmacokinetics, brain distribution, and therapeutic efficacy of the adenosine A_1 receptor partial agonist 2'-deoxy-N⁶-cyclopentyladenosine in sarin-poisoned rats. *Toxicol. Appl. Pharmacol.* **2003**, *192*, 86–94.

(39) Chen, Y.; Liu, Y.; Cottingham, C.; McMahon, L.; Jiao, K.; Greengard, P.; Wang, Q. Neurabin scaffolding of adenosine receptor and RGS4 regulates anti-seizure effect of endogenous adenosine. *J. Neurosci.* 2012, *32*, 2683–2695.

(40) Maillard, M. C.; Nikodijevic, O.; LaNoue, K. F.; Berkich, D. A.; Ji, X. D.; Bartus, R.; Jacobson, K. A. Adenosine receptor prodrugs: Synthesis and biological activity of derivatives of potent, A₁-selective agonists. *J. Pharm. Sci.* **1994**, *83*, 46–53.

(41) (a) Hann, M. M.; Keserü, G. M. Finding the sweet spot: The role of nature and nurture in medicinal chemistry. *Nat. Rev. Drug Discovery* **2012**, *11*, 355–365. (b) Riley, R. J.; Martin, I. J.; Cooper, A. E. The influence of DMPK as an integrated partner in modern drug discovery. *Curr. Drug Metab.* **2002**, *3*, 527–550.

(42) Dubey, R. K.; McAllister, C. B.; Inoue, M.; Wilkinson, G. R. Plasma binding and transport of diazepam across the blood-brain barrier. No evidence for in vivo enhanced dissociation. *J. Clin. Invest.* **1989**, *84*, 1155–1159.

(43) Harrison, P. K.; Bueters, T. J. H.; IJzerman, A. P.; van Helden, H. P. M.; Tattersall, J. E. H. Partial adenosine A_1 receptor agonists inhibit sarin-induced epileptiform activity in the hippocampal slice. *Eur. J. Pharmacol.* **2003**, 471, 97–104.

(44) (a) Tosh, D. K.; Chinn, M.; Ivanov, A. A.; Klutz, A. M.; Gao, Z. G.; Jacobson, K. A. Functionalized congeners of A_3 adenosine receptor-selective nucleosides containing a bicyclo[3.1.0]hexane ring system. J. Med. Chem. 2009, 52, 7580–7592. (b) Moon, H. R.; Choi, W. J.; Kim, H. O.; Jeong, L. S. Improved and alternative synthesis of D and L-cyclopentenone derivatives, the versatile intermediates for the synthesis of carbocyclic nucleosides. *Tetrahedron: Asymmetry* 2002, 13, 1189–1193.

(45) Molecular Operating Environment (MOE), version 2011.10, Chemical Computing Group Inc., 1255 University St., Suite 1600, Montreal, QC, H3B3X3, Canada.

(46) The UniProt Consortium. Reorganizing the protein space at the Universal Protein Resource (UniProt). *Nucleic Acids Res.* **2012**, *40*, D71–D75.

(47) Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shaw, D. E.; Shelley, M.; Perry, J. K.; Francis, P.; Shenkin, P. S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. *J. Med. Chem.* **2004**, *47*, 1739–1749. (48) Schrödinger, LLC, Portland, OR.

(49) Jacobson, M. P.; Friesner, R. A.; Xiang, Z.; Honig, B. On the role of crystal packing forces in determining protein side-chain conformations. *J. Mol. Biol.* **2002**, *320*, 597–608.

(50) White, H. S.; Johnson, M.; Wolf, H. H.; Kupferberg, H. J. The early identification of anticonvulsant activity: Role of the maximal electroshock and subcutaneous pentylenetetrazol seizure models. *Ital. J. Neurol. Sci.* **1995**, *16*, 73-77.

(51) White, H. S.; Woodhead, J. H.; Franklin, M. R. General principles: Experimental selection, quantification, and evaluation of antiepileptic drugs. In *Antiepileptic Drugs*; Levy, R. H., Mattson, R. H., Meldrum, B., Eds.; Raven Press; New York, 1995; pp 99–110.

(52) Smith, M.; Wilcox, K. S.; White, H. S. Discovery of antiepileptic drugs. *Neurotherapeutics* **2007**, *4*, 12–17.

(53) Toman, J. E.; Everett, G. M.; Richards, R. K. The search for new drugs against epilepsy. *Tex. Rep. Biol. Med* **1952**, *10*, 96–104.

(54) Barton, M. E.; Klein, B. D.; Wolf, H. H.; White, H. S. Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. *Epilepsy Res.* **2001**, *47*, 217–227.

(55) Matagne, A.; Klitgaard, H. Validation of corneally kindled mice: A sensitive screening model for partial epilepsy in man. *Epilepsy Res.* **1998**, *31*, 59–71.

(56) Racine, R. Modification of seizure activity by electrical stimulation. 2. Motor seizures. *Electroencephalogr. Clin. Neurophysiol.* **1972**, 281–294.

(57) Dunham, M. S.; Miya, T. A. A note on a simple apparatus for detecting neurological deficit in rats and mice. *J. Amer. Pharm. Assoc. Sci. Ed.* **1957**, *46*, 208–209.

(58) Finney, D. J. Statistical logic in the monitoring of reactions to therapeutic drugs. *Methods Inf. Med.* **1971**, *10*, 237–245.

(59) Gao, Z. G.; Mamedova, L. K.; Chen, P.; Jacobson, K. A. 2-Substituted adenosine derivatives: Affinity and efficacy at four subtypes of human adenosine receptors. *Biochem. Pharmacol.* **2004**, *68*, 1985–1993.

(60) Müller, C.; Jacobson, K. A. Recent developments in adenosine receptor ligands and their potential as novel drugs. *BBA Biomembr.* **2011**, *1808*, 1290–1308.

(61) Klutz, A. M.; Gao, Z. G.; Lloyd, J.; Shainberg, A.; Jacobson, K. A. Enhanced A_3 adenosine receptor selectivity of multivalent nucleoside–dendrimer conjugates. *J. Nanobiotechnol.* **2008**, *6*, 12.